Kinetics of autophagic activity in nanoparticle-exposed lung adenocarcinoma (A549) cells.

Autophagy Rep

Will Rogers Institute Pulmonary Research Center and Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Published: March 2023

Autophagy, a homeostatic mechanism, is crucial in maintaining normal cellular function. Although dysregulation of autophagic processes is recognized in certain diseases, it is unknown how maintenance of cellular homeostasis might be affected by the kinetics of autophagic activity in response to various stimuli. In this study, we assessed those kinetics in lung adenocarcinoma (A549) cells in response to exposure to nanoparticles (NP) and/or Rapamycin. Since NP are known to induce autophagy, we wished to determine if this phenomenon could be a driver of the harmful effects seen in lung tissues exposed to air pollution. A549 cells were loaded with a fluorescent marker (DAPRed) that labels autophagosomes and autolysosomes. Autophagic activity was assessed based on the fluorescence intensity of DAPRed measured over the entire cell volume of live single cells using confocal laser scanning microscopy (CLSM). Autophagic activity over time was determined during exposure of A549 cells to single agents (50 nM Rapamycin; 80 μg/mL, 20 nm carboxylated polystyrene NP (PNP); or, 1 μg/mL ambient ultrafine particles (UFP) (<180 nm)), or double agents (Rapamycin + PNP or Rapamycin + UFP; concomitant and sequential), known to stimulate autophagy. Autophagic activity increased in all experimental modalities, including both single agent and double agent exposures, and reached a steady state in all cases ~2 times control from ~8 to 24 hrs, suggesting the presence of an upper limit to autophagic capacity. These results are consistent with the hypothesis that environmental stressors might exert their harmful effects, at least in part, by limiting available autophagic response to additional stimulation, thereby making nanoparticle-exposed cells more susceptible to secondary injury due to autophagic overload.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373127PMC
http://dx.doi.org/10.1080/27694127.2023.2186568DOI Listing

Publication Analysis

Top Keywords

autophagic activity
16
a549 cells
16
kinetics autophagic
8
lung adenocarcinoma
8
adenocarcinoma a549
8
cells
5
activity
4
activity nanoparticle-exposed
4
nanoparticle-exposed lung
4
a549
4

Similar Publications

Fluoride-Induced Autophagy and Apoptosis in the Mouse Ovary: Genomic Insights into IL-17 Signaling and Gut Microbiota Dysbiosis.

J Agric Food Chem

January 2025

Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan,China.

Chronic fluoride (F) exposure is linked to gonadotoxicity in females, yet the underlying molecular mechanisms remain unclear. This study investigated fluoride-induced reprotoxicity using advanced genomic profiling. RNA-seq analysis identified significant activation of autophagy, apoptosis, and IL-17 signaling pathways in fluoride-exposed female mice.

View Article and Find Full Text PDF

High glucose induces renal tubular epithelial cell senescence by inhibiting autophagic flux.

Hum Cell

January 2025

Department of Nephrology, Zhong Da Hospital, Gulou District, No. 87, Dingjiaqiao, Zhongyangmen Street, Nanjing, 210009, Jiangsu, China.

Autophagy, a cellular degradation process involving the formation and clearance of autophagosomes, is mediated by autophagic proteins, such as microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), and modulated by 3-methyladenine (3-MA) as well as chloroquine (CQ). Senescence, characterised by permanent cell cycle arrest, is marked by proteins such as cyclin-dependent kinase inhibitor 1 (p21) and tumour protein 53 (p53). This study aims to investigate the relationship between cell senescence and renal function in diabetic kidney disease (DKD) and the effect of autophagy on high-glucose-induced cell senescence.

View Article and Find Full Text PDF

Chemically engineered antibodies for autophagy-based receptor degradation.

Nat Chem Biol

January 2025

Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies).

View Article and Find Full Text PDF

Deacetylated SNAP47 recruits HOPS to facilitate autophagosome-lysosome fusion independent of STX17.

Nat Commun

January 2025

School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.

Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.

View Article and Find Full Text PDF

Fangchinoline eliminates intracellular Salmonella by enhancing lysosomal function via the AMPK-mTORC1-TFEB axis.

J Adv Res

January 2025

Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China. Electronic address:

Introduction: Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!