Towards advanced bioprocess optimization: A multiscale modelling approach.

Comput Struct Biotechnol J

Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

Published: July 2023

Mammalian cells produce up to 80 % of the commercially available therapeutic proteins, with Chinese Hamster Ovary (CHO) cells being the primary production host. Manufacturing involves a train of reactors, the last of which is typically run in fed-batch mode, where cells grow and produce the required protein. The feeding strategy is decided a priori, from either past operations or the design of experiments and rarely considers the current state of the process. This work proposes a Model Predictive Control (MPC) formulation based on a hybrid kinetic-stoichiometric reactor model to provide optimal feeding policies in real-time, which is agnostic to the culture, hence transferable across CHO cell culture systems. The benefits of the proposed controller formulation are demonstrated through a comparison between an open-loop simulation and closed-loop optimization, using a digital twin as an emulator of the process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371800PMC
http://dx.doi.org/10.1016/j.csbj.2023.07.003DOI Listing

Publication Analysis

Top Keywords

advanced bioprocess
4
bioprocess optimization
4
optimization multiscale
4
multiscale modelling
4
modelling approach
4
approach mammalian
4
mammalian cells
4
cells produce
4
produce commercially
4
commercially therapeutic
4

Similar Publications

Removal of cyanobacterial harmful algal blooms (HABs) from contaminated local park lake using mycelial pellets.

Heliyon

January 2025

Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Eutrophication and hypereutrophication in lakes foster harmful blue-green algal blooms, which pose a significant threat to the ecological health of freshwater reservoirs. This study investigated the effectiveness of the bio-flocculation approach using the fungus strain BGF4A1 to remove these harmful blooms, specifically targeting cyanobacterial species like PCC-7914. Key flocculation parameters, cyanobacterial concentrations, adsorption kinetics, and pellet morphology were explored in this research.

View Article and Find Full Text PDF

Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring.

ACS Nano

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.

Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances.

View Article and Find Full Text PDF

Characterization and design of dipeptide media formulation for scalable therapeutic production.

Appl Microbiol Biotechnol

January 2025

School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-GuGyeonggi-Do 16419, Suwon-Si, South Korea.

Process intensification and simplification in biopharmaceutical manufacturing have driven the exploration of advanced feeding strategies to improve culture performance and process consistency. Conventional media design strategies, however, are often constrained by the stability and solubility challenges of amino acids, particularly in large-scale applications. As a result, dipeptides have emerged as promising alternatives.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Recently, the biosynthesis of omega-3 fatty acids (ω3 FAs) in yeast has witnessed significant advancements. Notably, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) play crucial roles in overall human growth, encompassing neurological development, cardiovascular health, and immune function. However, traditional sources of ω3 FAs face limitations such as environmental concerns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!