A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gene co-expression network identifies critical genes, pathways and regulatory motifs mediating the progression of rift valley fever in . | LitMetric

AI Article Synopsis

  • Rift Valley Fever (RVF) is a viral disease transmitted by mosquitoes, mainly affecting livestock like sheep and cattle, and can lead to significant mortality and reproductive loss.
  • The study focuses on uncovering gene clusters and regulatory elements involved in RVF to develop potential vaccines and treatments by analyzing RNA-Seq samples using advanced computational techniques.
  • Key findings include identifying enriched gene modules related to immune response and viral defense, as well as regulatory motifs that could serve as targets for new therapeutic strategies against RVF progression.

Article Abstract

Rift Valley Fever (RVF) is a mosquito-borne viral disease caused by the Rift Valley Fever Virus. The disease is a zoonosis that largely affects domestic animals, including sheep, goats, and cattle, resulting in severe morbidity and mortality marked by massive storm abortions. To halt human and livestock deaths due to RVF, the development of efficacious vaccines and therapeutics is a compelling and urgent priority. We sought to identify potential key modules (gene clusters), hub genes, and regulatory motifs involved in the pathogenesis of RVF in that are amenable to inhibition. We analyzed 39 RNA-Seq samples using the weighted gene co-expression network analysis (WGCNA) R package and uncovered significantly enriched modules containing genes with potential pivotal roles in RVF progression. Moreover, regulatory motif analysis conducted using the Multiple Expectation Maximization for Motif Elicitation (MEME) suite identified motifs that probably modulate vital biological processes. Gene ontology terms associated with identified motifs were inferred using the GoMo human database. The gene co-expression network constructed in WGCNA using 5000 genes contained seven (7) modules, out of which four were significantly enriched for terms associated with response to viruses, response to interferon-alpha, innate immune response, and viral defense. Additionally, several biological pathways implicated in developmental processes, anatomical structure development, and multicellular organism development were identified. Regulatory motifs analysis identified short, repeated motifs whose function(s) may be amenable to disruption by novel therapeutics. Predicted functions of identified motifs include tissue development, embryonic organ development, and organ morphogenesis. We have identified several hub genes in enriched co-expressed gene modules and regulatory motifs potentially involved in the pathogenesis of RVF in that are likely viable targets for disruption by novel therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375796PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e18175DOI Listing

Publication Analysis

Top Keywords

regulatory motifs
16
gene co-expression
12
co-expression network
12
rift valley
12
valley fever
12
identified motifs
12
motifs
8
hub genes
8
motifs involved
8
involved pathogenesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!