Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Some studies have found that probiotics can improve cognitive impairment in Alzheimer's disease, although the specific molecular mechanism by which this occurs has not been reported. Our previous research found that probiotics inhibited bacteria-related Toll-like receptor 4- and retinoic-acid-inducible gene-I-mediated nuclear factor-κB signaling pathways to improve cognitive impairment. However, it is unclear whether probiotics have similar effects on other pattern recognition receptors that respond to bacteria.
Methods: Nine-month-old senescence-accelerated mouse prone 8 (SAMP8) mice received ProBiotic-4 (a mixture of , and ) orally for 12 weeks. The effects on other bacteria-related pattern recognition receptors were then investigated.
Results: ProBiotic-4-treated SAMP8 mice showed improvement in memory deficits, synaptic and cerebral neuronal injuries, and microglial activation. ProBiotic-4 also markedly increased the expression of intestinal tight junction proteins (i.e., claudin-1, occludin, and zonula occluden-1), decreased the expression of interleukin-1β at both the mRNA and protein levels, and reduced the expression of caspase-11, cleaved caspase-1, and α-kinase 1 (ALPK1) in the intestine and brain.
Conclusions: These findings suggest that probiotics may have therapeutic potential for the treatment of inflammation in the gut-brain axis and for cognitive impairment. The mechanism of action of probiotics appears to be related to inhibition of the caspase-11/caspase-1 pathway and reduction of ALPK1 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.31083/j.jin2204092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!