Atypical teratoid/rhabdoid tumor (AT/RT) is a rare aggressive central nervous system tumor that typically affects children under three years old and has poor survival with a high risk for neurologic deficits. The primary purpose of this study was to successfully treat the disease and delay or avoid whole-brain radiotherapy for children with AT/RT. A retrospective analysis was performed for six children diagnosed with AT/RT and treated with multimodal treatment at a single institute between 2014 and 2020. Furthermore, germline aberrations and methylation status of the tumors were analyzed. One patient who did not receive a modified IRS-III regimen replaced with ifosphamide, carboplatin, and etoposide (ICE) in induction chemotherapy was excluded from this analysis. Five patients who received ICE therapy were under three years old. After a surgical approach, they received intensive chemotherapy and high-dose chemotherapy with autologous peripheral blood stem cell transplantation (HDCT/autoPBSCT) followed by intrathecal topotecan maintenance therapy. Three patients underwent single HDCT/autoPBSCT, and the other two received sequential treatment. Two patients with germline aberrations and metastases died of progressive AT/RT or therapy-related malignancy, while 3 with localized tumors without germline aberrations remained alive. One survivor received local radiotherapy only, while the other two did not undergo radiotherapy. All three surviving patients were able to avoid whole-brain radiotherapy. Our results suggest that AT/RT patients with localized tumors without germline aberrations can be rescued with multimodal therapy, including induction therapy containing ICE followed by HDCT/autoPBSCT and intrathecal topotecan maintenance therapy without radiotherapy. Further large-scale studies are necessary to confirm this hypothesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08880018.2023.2220734 | DOI Listing |
Turk J Pediatr
December 2024
Department of Pediatric Hematology Oncology, Ankara Bilkent City Hospital, Ankara Yıldırım Beyazıt University, Ankara, Türkiye.
Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.
Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.
Am J Hum Genet
January 2025
Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.
View Article and Find Full Text PDFHum Genomics
January 2025
Population Health Program, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
Background: TP53 variant classification benefits from the availability of large-scale functional data for missense variants generated using cDNA-based assays. However, absence of comprehensive splicing assay data for TP53 confounds the classification of the subset of predicted missense and synonymous variants that are also predicted to alter splicing. Our study aimed to generate and apply splicing assay data for a prioritised group of 59 TP53 predicted missense or synonymous variants that are also predicted to affect splicing by either SpliceAI or MaxEntScan.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan.
Bioinformatics is a rapidly evolving field charged with cataloging, disseminating, and analyzing biological data. Bioinformatics started with genomics, but while genomics focuses more narrowly on the genes comprising a genome, bioinformatics now encompasses a much broader range of omics technologies. Overcoming barriers of scale and effort that plagued earlier sequencing methods, bioinformatics adopted an ambitious strategy involving high-throughput and highly automated assays.
View Article and Find Full Text PDFbioRxiv
December 2024
Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
encodes a UDP-galactose transporter essential for glycosylation of proteins and galactosylation of lipids and glycosaminoglycans. Germline genetic variants have been identified in congenital disorders of glycosylation and somatic variants have been linked to intractable epilepsy associated with malformations of cortical development. However, the functional consequences of these pathogenic variants on brain development and network integrity remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!