Rheology Engineering for Dry-Spinning Robust N-Doped MXene Sediment Fibers toward Efficient Charge Storage.

Small

School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, P. R. China.

Published: November 2023

MXene nanosheets are believed to be an ideal candidate for fabricating fiber supercapacitors (FSCs) due to their metallic conductivity and superior volumetric capacitance, while challenges remain in continuously collecting bare MXene fibers (MFs) via the commonly used wet-spinning technique due to the intercalation of water molecules and a weak interaction between Ti C T nanosheets in aqueous coagulation bath that ultimately leads to a loosely packed structure. To address this issue, for the first time, a dry-spinning strategy is proposed by engineering the rheological behavior of Ti C T sediment and extruding the highly viscose stock directly through a spinneret followed by a solvent evaperation induced solidification. The dry-spun Ti C T fibers show an optimal conductivity of 2295 S cm , a tensile strength of 64 MPa and a specific capacitance of 948 F cm . Nitrogen (N) doping further improves the capacitance of MFs to 1302 F cm without compromising their mechanical and electrical properties. Moreover, the FSC based on N-doped MFs exhibits a high volumetric capacitance of 293 F cm , good stability over 10 000 cycles, excellent flexibility upon bending-unbending, superior energy/power densities and anti-self-discharging property. The excellent electrochemical and mechanical properties endow the dry-spun MFs great potential for future applications in wearable electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202304687DOI Listing

Publication Analysis

Top Keywords

volumetric capacitance
8
rheology engineering
4
engineering dry-spinning
4
dry-spinning robust
4
robust n-doped
4
n-doped mxene
4
mxene sediment
4
sediment fibers
4
fibers efficient
4
efficient charge
4

Similar Publications

Size Engineering of TiCT Nanosheets for Enhanced Supercapacitance Performance.

Molecules

January 2025

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.

In this research, we synthesized a series of TiCT nanosheets with varying lateral dimensions and conducted a thorough investigation into the profound relationship between the electrochemical performance of TiCT materials and their lateral sizes. This study innovatively incorporates a clever combination of small-sized and large-sized TiCT nanosheets in the electrode preparation process. This strategy yields excellent results at low scan rates, with the fabricated electrode achieving a high volumetric capacitance of approximately 658 F/g.

View Article and Find Full Text PDF

Role of Mesoporosity in Hard Carbon Anodes for High-Energy and Stable Potassium-Ion Storage.

Small

January 2025

Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.

Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.

View Article and Find Full Text PDF

The most common transducers used to generate ultrasound in medical applications are based on short electrical pulses applied to piezoelectric transducers and capacitive micromachined ultrasound transducers. However, piezoelectric transducers have a limited frequency bandwidth, defined by their physical thickness, and capacitive micromachined ultrasound transducers have poor transmission efficiency. The high frequency cutoff limits the spatial resolution of ultrasonic images.

View Article and Find Full Text PDF

Glucose-Sensitive Biohybrid Roots for Supercapacitive Bioanodes.

ACS Appl Bio Mater

December 2024

Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Bredgatan 33, Norrkoping 601 74, Sweden.

Plants as living organisms, as well as their material-structural components and physiological processes, offer promising elements for developing more sustainable technologies. Previously, we demonstrated that plants could acquire electronic functionality, as their enzymatic activity catalyzes the in vivo polymerization of water-soluble conjugated oligomers. We then leveraged plant-integrated conductors to develop biohybrid energy storage devices and circuits.

View Article and Find Full Text PDF

A Universal Strategy for Synthesis of Large-Area and Ultrathin Metal Oxide/rGO Film Towards Scalable Fabrication of High-Performance Wearable Microsupercapacitors.

Small

December 2024

School of Materials Science and Engineering, Tianjin Key Laboratory for Photoelectric Materials & Devices, Key Laboratory of Display Materials and Photoelectric Devices, Institute for Green Nanotechnology, Tianjin University of Technology, Tianjin, 300384, P. R. China.

High-performance wearable microsupercapacitor (MSC) as energy storage components is highly desirable for developing self-powering wearable electronics. However, synthesis of MSC electrode film concurrently possessing large area, ultrathin thickness, and high areal energy storage capability is still challenging. Herein, a universal strategy is reported to synthesize large-area and ultrathin metal oxide nanoparticles (MONPs)/reduced graphene oxide (rGO) hybrid-structured films by attaching self-assembled film of a wide range of MONPs onto self-assembled rGO film and subsequent carbonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!