Walnut shell is lightweight material with high-strength and toughening characteristics, but it is different from other nut shells' microstructure with two or three short sclerotic cell layers and long bundle fibers. It is essential to explore the fracture resistance biomechanism of lightweight walnut shell and how to prevent damage of bionic structure. In this study, it is found that the asymmetric mass center and geometric center dissipated impact energy to the whole shell without loading concentration in the loading area. Diaphragma juglandis is a special structure improved walnut shell's toughening. The S-shape gradient porosity/elastic modulus distribution combined with pits on single auxetic sclerotic cells requires higher energy to crack expansion, then decreases its fracture behavior. These fantastic findings inspire to design fracture resistance devices including helmets, armor, automobile anti-collision beams, and re-entry capsule in spacecraft.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10520628 | PMC |
http://dx.doi.org/10.1002/advs.202303238 | DOI Listing |
Sci Bull (Beijing)
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China. Electronic address:
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia.
In this work, the fracture mechanism of winding carbon-fiber-reinforced plastics (CFRPs) based on epoxy matrices reinforced by polysulfone film was investigated. Two types of polymer matrices were used: epoxy oligomer (EO) cured by iso-methyltetrahydrophthalic anhydride (iso-MTHPA), and EO-modified polysulfone (PSU) with active diluent furfuryl glycidyl ether (FGE) cured by iso-MTHPA. At the winding stage, the reinforcing film was placed in the middle layer of the CFRP.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Explosion Science and Protection Technology, Beijing Institute of Technology, Beijing 100081, China.
Hydrogen embrittlement is a critical issue for zirconium alloys, which receives long-term attention in their applications. The formation of brittle hydrides facilitates crack initiation and propagation, thereby significantly reducing the material's ductility. This study investigates the tensile properties and hydride morphology of a novel zirconium alloy under different hydrogen-charging current densities ranging from 0 to 300 mA/cm, aiming to clarify the influence of hydrides on the fracture behavior of the alloy.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Research and Testing Institute Pilsen, 30100 Plzen, Czech Republic.
In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!