Despite the remarkable advances made in the development of 2D perovskites suitable for various high-performance devices, the development of sub-30 nm nanopatterns of 2D perovskites with anisotropic photoelectronic properties remains challenging. Herein, a simple but robust route for fabricating sub-30 nm 1D nanopatterns of 2D perovskites over a large area is presented. This method is based on nanoimprinting a thin precursor film of a 2D perovskite with a topographically pre-patterned hard poly(dimethylsiloxane) mold replicated from a block copolymer nanopattern consisting of guided self-assembled monolayered in-plane cylinders. 1D nanopatterns of various 2D perovskites (A' MA Pb X ,A' = BA, PEA, X = Br, I) are developed; their enhanced photoluminescence (PL) quantum yields are approximately four times greater than those of the corresponding control flat films. Anisotropic photocurrent is observed because 2D perovskite nanocrystals are embedded in a topological 1D nanopattern. Furthermore, this 1D metal-coated nanopattern of a 2D perovskite is employed as a color conversion optical polarizer, in which polarized PL is developed. This is due to its capability of polarization of an incident light arising from the sub-30 nm line pattern, as well as the PL of the confined 2D perovskite nanocrystals in the pattern.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202300568DOI Listing

Publication Analysis

Top Keywords

nanopatterns perovskites
12
block copolymer
8
color conversion
8
conversion optical
8
optical polarizer
8
sub-30 nm nanopatterns
8
perovskite nanocrystals
8
sub-30 nm
4
sub-30 nm perovskites
4
perovskites patterns
4

Similar Publications

Soft optical materials based on the integration of perovskite nanostructures and block copolymers.

Chem Commun (Camb)

December 2024

School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.

Metal halide perovskites and their nanostructures have efficient optical absorption and emission in the visible range with high external quantum efficiency. They have been at the forefront of next-generation photovoltaics and optoelectronics applications. But several intrinsic limitations of perovskites including low stability and incompatibility with lithography-based patterning constrains their broader applications.

View Article and Find Full Text PDF

Sculpting the Electronic Nano-Terrain on a Perovskite Film for Efficient Charge Transport.

ACS Nano

September 2024

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Nanopatterned halide perovskites have emerged to improve the performance of optoelectronic devices by controlling the crystallographic and optical properties via morphological modification. However, the correlation between the photophysical property and morphology transformation in nanopatterned perovskite films remains elusive, which hinders the rational design of nanopatterned halide perovskites for optoelectronic devices. In this study, we employed nanoimprinting lithography on a perovskite film to exert a precise control over grain growth and manipulate electronic structures at the level of individual grains.

View Article and Find Full Text PDF

Cryogenic Electron-Beam Writing for Perovskite Metasurface.

Nano Lett

May 2024

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.

Halide perovskites (HPs) metasurfaces have recently attracted significant interest due to their potential to not only further enhance device performance but also reveal the unprecedented functionalities and novel photophysical properties of HPs. However, nanopatterning on HPs is critically challenging as they are readily destructed by the organic solvents in the standard lithographic processes. Here, we present a novel, subtle, and fully nondestructive HPs metasurface fabrication strategy based on cryogenic electron-beam writing.

View Article and Find Full Text PDF

Micro/nanostructured perovskites with spatially graded compositions and bandgaps are promising in filter-free, chip-level multispectral, and hyperspectral detection. However, achieving high-resolution patterning of perovskites with controlled graded compositions is challenging. Here, a programmable mixed electrohydrodynamic printing (M-ePrinting) technique is presented to realize the one-step direct-printing of arbitrary spatially graded perovskite micro/nanopatterns for the first time.

View Article and Find Full Text PDF

Sub-30 nm 2D Perovskites Patterns via Block Copolymer Guided Self-Assembly for Color Conversion Optical Polarizer.

Small

November 2023

Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Despite the remarkable advances made in the development of 2D perovskites suitable for various high-performance devices, the development of sub-30 nm nanopatterns of 2D perovskites with anisotropic photoelectronic properties remains challenging. Herein, a simple but robust route for fabricating sub-30 nm 1D nanopatterns of 2D perovskites over a large area is presented. This method is based on nanoimprinting a thin precursor film of a 2D perovskite with a topographically pre-patterned hard poly(dimethylsiloxane) mold replicated from a block copolymer nanopattern consisting of guided self-assembled monolayered in-plane cylinders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!