Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mismatch repair deficiency (dMMR) or microsatellite instability-high (MSI-H) represents a distinct phenotype among solid tumors characterized by frequent frameshift mutations resulting in the generation of neoantigens that are highly immunogenic. Seminal studies identified that dMMR/MSI-H tumors are exquisitely sensitive to immune checkpoint inhibitors, which has dramatically improved outcomes for patients harboring dMMR/MSI-H tumors. Nevertheless, many patients develop resistance to single-agent immune checkpoint blockade, prompting the need for improved therapeutic options for this patient population. In this review, we highlight key studies examining the efficacy of PD1 inhibitors in the metastatic and neoadjuvant setting for patients with dMMR/MSI-H tumors, describe resistance mechanisms to immune checkpoint blockade, and discuss novel treatment approaches that are currently under investigation for dMMR/MSI-H tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.trecan.2023.07.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!