Androgenetic alopecia (AGA) is a transracial and cross-gender disease worldwide with a higher prevalence among young individuals. Traditional oral or subcutaneous injections are often used to treat AGA, however, they may cause severe side-effects and therefore effective treatments for AGA are currently lacking. In this work, to treat AGA, we developed a composite paste system based on minoxidil (MXD)-loaded nanoparticles and valproic acid (VPA) with the assistance of roller-microneedles (roller-MNs). The matrix of composite paste systems is carboxymethyl cellulose (CMC), hyaluronic acid (HA) and polyvinylpyrrolidone (PVP). The roller-MNs can create microchannels in the skin to enhance drug transdermal efficiency. With the combined effects of the stimulation hair follicle (HF) regrowth by upregulating Wnt/beta-catenin of VPA and the mechanical microchannels induced by roller-MNs, the as-prepared composite paste systems successfully boost perifollicular vascularization, and activate hair follicle stem cells, thereby inducing notably faster hair regeneration at a lower administration frequency on AGA mouse model compared with minoxidil. This approach offers several benefits, including the avoidance of efficacy loss due to the liver's first-pass effect associated with oral drug, reduction in the risk of infection from subcutaneous injection, and significant decrease in the side effects of lower-dose MXD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.126013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!