Catalytic polymer nanocomposites for environmental remediation of wastewater.

Sci Total Environ

Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain. Electronic address:

Published: November 2023

The removal of harmful chemicals and species from water, soil, and air is a major challenge in environmental remediation, and a wide range of materials have been studied in this regard. To identify the optimal material for particular applications, research is still ongoing. Polymer nanocomposites (PNCs), which combine the benefits of nanoparticles with polymers, an alternative to conventional materials, may open up new possibilities to overcome this difficulty. They have remarkable mechanical capabilities and compatibility due to their polymer matrix with a very high surface area to volume ratio brought about by their special physical and chemical properties, and the extremely reactive surfaces of the nanofillers. Composites also provide a viable answer to the separation and reuse problems that hinder nanoparticles in routine use. Understanding these PNCs materials in depth and using them in practical environmental applications is still in the early stages of development. The review article demonstrates a crisp introduction to the PNCs with their advantageous properties as a catalyst in environmental remediation. It also provides a comprehensive explanation of the design procedure and synthesis methods for fabricating PNCs and examines in depth the design methods, principles, and design techniques that guide proper design. Current developments in the use of polymer nanocomposites for the pollutant treatment using three commonly used catalytic processes (catalytic and redox degradation, electrocatalytic degradation, and biocatalytic degradation) are demonstrated in detail. Additionally, significant advances in research on the aforementioned catalytic process and the mechanism by which contaminants are degraded are also amply illustrated. Finally, there is a summary of the research challenges and future prospects of catalytic PNCs in environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165772DOI Listing

Publication Analysis

Top Keywords

environmental remediation
16
polymer nanocomposites
12
catalytic
5
environmental
5
pncs
5
catalytic polymer
4
nanocomposites environmental
4
remediation
4
remediation wastewater
4
wastewater removal
4

Similar Publications

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems.

View Article and Find Full Text PDF

Highly efficient photocatalysts for degrading persistent antibiotics and synthetic dye pollutants under visible light are crucial for sustainable environmental remediation. In this study, we engineered a novel BiMoO (BMO)/NiAl-LDH (layered double hydroxide) hybrid catalyst with a unique 2D/2D heterostructure, optimized for the visible-light-driven elimination of ciprofloxacin (CPF) and hazardous synthetic dyes such as rhodamine B and methylene blue. The optimized BMO-30/LDH hybrid demonstrated exceptional photocatalytic performance, achieving nearly complete degradation of CPF and synthetic dyes with high mineralization efficiency, surpassing many previously reported state-of-the-art photocatalysts.

View Article and Find Full Text PDF

Nitrogen vacancy mediated g-CN/BiVO Z-scheme heterostructure nanostructures for exceptional photocatalytic performance.

Environ Res

December 2024

School of Materials and Chemistry, Analytical and Testing Center, Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang, 621010, China. Electronic address:

In this work, a novel V-g-CN/BiVO (V-CN/BVO) Z-scheme heterojunction photocatalyst was formed by introducing nitrogen vacancies (V) and constructing heterojunction, which is able to efficiently degrade the representative contaminant rhodamine B (RhB) upon exposure to visible-light, resulting in an outstanding degradation rate of 98.91% of RhB within 30 min. This photocatalyst exhibits catalytic universality and allows the degradation of methylene blue (MB, 97.

View Article and Find Full Text PDF

Boosting the Phosphate Adsorption of Calcite by Low Mg-Doping.

Environ Res

December 2024

College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian, 361021, China; Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China. Electronic address:

Calcite is a promising material choice for adsorbing phosphates because of its abundance and environmentally benign nature. However, the slow adsorption kinetics and hence low adsorption capacity within a short time frame hinders its practical application. In this work, we solve these problems by presenting a low Mg-doped calcite adsorbent, Mg-10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!