Climate change can generate cascading effects on animals through compounding stressors. As ectotherms, insects are particularly susceptible to variation in temperature and extreme events. How insects respond to temperature often occurs with respect to their environment, and a pertinent question involves how thermal stress integrates with insect capabilities to resolve interactions with gut microorganisms (microbiome and gut pathogens). We explore the impact of elevated temperatures and the impact of the host physiological response influencing immune system regulation and the gut microbiome. We summarize the literature involving how elevated temperature extremes impact insect gut immune systems, and how in turn that alters potential interactions with the gut microbiome and potential pathogens. Temperature effects on immunity are complex, and ultimate effects on microbial components can vary by system. Moreover, there are multiple questions yet to explore in how insects contend with simultaneous abiotic stressors and potential trade-offs in their response to opportunistic microbiota.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cois.2023.101096 | DOI Listing |
Elife
January 2025
Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.
View Article and Find Full Text PDFFront Microbiol
January 2025
Insect Interactions Laboratory, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
Annu Rev Entomol
January 2025
Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA; email:
The point of entry for the majority of arthropod pathogens and arthropod-vectored pathogens of plant, animal, and human health importance is the arthropod midgut. Pathogen interaction with the midgut therefore represents a primary target for intervention to prevent pathogen infection and transmission. Despite this key role in pathogen invasion, relatively little is known of the specific molecular interactions between pathogens and the surface of the arthropod gut epithelium, with few pathogen receptors having been definitively identified.
View Article and Find Full Text PDFInsects
January 2025
College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.
The gut bacterial community plays many important roles in the production of nutrients and digestion. and (Lepidoptera: Saturniidae) are two traditional sources of human food, as well as being silk-producing insects. In the present study, the influences of rearing season (spring and autumn), silkworm species ( and ), and host plant ( and ) on gut microbiota diversity were tested using Illumina MiSeq technology.
View Article and Find Full Text PDFInsects
December 2024
Institute of Economic Animal, Chongqing Academy of Animal Sciences, Chongqing 402460, China.
Honeybee gut microbiota plays a crucial role in maintaining their health and digestive function. Studies have confirmed that quercetin improves honeybee health by enhancing their pesticide tolerance and survival rates. This study aimed to examine the effects of quercetin on the bee gut microbiome by absolute quantification sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!