Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epidemiological studies have established an association between chronic exposure to PM and male infertility. However, the underlying mechanisms were not fully revealed. In this study, we established mice models exposed to PM for 16 weeks, and a significant decrease in sperm quality accompanied by an increase in testosterone levels were observed after PM exposure. Moreover, treatment with ferrostatin-1 (Fer-1), a specific ferroptosis inhibitor, effectively mitigated PM-induced testicular dysfunction in mice. And lipid peroxidation and ferritin accumulation were found to be significantly increased in Leydig cells of testes with a PM-dose dependent manner. Further investigations revealed that TM-3 cells, a mouse Leydig cell line, were prone to ferroptosis after PM exposure, and the cell viability was partly rescued after the intervention of Fer-1. Furthermore, our results supported that the ferroptosis of TM-3 cells was attributed to the upregulation of ferredoxin 1 (FDX1), which was the protein transferring electrons to cytochrome P450 family 11 subfamily A member 1 to aid lysing cholesterol to pregnenolone at initial of steroidogenesis. Mechanically, PM-induced FDX1 upregulation resulted in cellular ROS elevation and ferrous iron overload, which together initiated an autoxidation process of polyunsaturated fatty acids in the cell membrane of Leydig cells until the accumulated lipid peroxides triggered ferroptotic cell death. Simultaneously, upregulation of FDX1 promoted steroidogenesis and let to an increased level of testosterone. In summary, our work suggested that FDX1, a mediator involving steroidogenesis, was a key regulator in PM-induced Leydig cells ferroptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2023.115309 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!