Currently, only one crystal structure of LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide) (P2/n) has been discovered, and there are still debates on its phase transition point and phase diagram. Based on previous work, we performed crystal structure, Raman spectra, and vibrational properties calculations on LLM-105 crystal. Our results indicate that the crystal structure of LLM-105 remains stable until compressed to 49 GPa, beyond which it may undergo two phase transitions at pressure intervals of 49.0-49.1 GPa and 51.4-51.5 GPa, respectively. Analysis of Raman shift results suggests that these two phase transitions may be reversible, with an intermediate phase possibly acting as a transition phase. Additionally, based on the quasi-harmonic approximation, we fitted the experimental data of LLM-105 lattice expansion state, obtaining the volume at zero pressure and using it for Raman spectra calculations. The results demonstrated the accuracy of this quasi-harmonic approximation method in describing the redshift of Raman peaks during the heating process and the excitation ratio of Raman peaks in different wavenumber ranges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2023.123170 | DOI Listing |
Sci Data
January 2025
Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA.
Further improvements to lithium-ion and emerging battery technologies can be enabled by an improved understanding of the chemistry and working mechanisms of interphases that form at electrochemically active battery interfaces. However, it is difficult to collect and interpret spectra of interphases for several reasons, including the presence of a variety of compounds. To address this challenge, we herein present a vibrational spectroscopy and X-ray diffraction data library of ten compounds that have been identified as interphase constituents in lithium-ion or emerging battery chemistries.
View Article and Find Full Text PDFTalanta
January 2025
Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:
The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Institut für Anorganische Chemie, Universität Kiel, Max-Eyth.-Str. 2, 24118 Kiel, Germany.
Reaction of Co(NCS) with 4-methyl-pyridine in water leads to the formation of single crystals of the title compound, [Co(NCS)(CHN)] . The asymmetric unit consists of two crystallographically independent thio-cyanate anions and two crystallographically independent 4-methyl-pyridine coligands in general positions, as well as of two different Co cations, of which one is located on a twofold rotational axis, whereas the second occupies a center of inversion. The methyl H atoms in both 4-methyl-pyridine ligands are disordered and were refined using a split model.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Physics and Astronomy, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, USA.
Surface-enhanced Raman spectroscopy (SERS) holds remarkable potential for the rapid and portable detection of trace molecules. However, the analysis and comparison of SERS spectra are challenging due to the diverse range of instruments used for data acquisition. In this paper, a spectra instrument transformation framework based on the penalized functional regression model (SpectraFRM) is introduced for cross-instrument mapping with subsequent machine learning classification to compare transformed spectra with standard spectra.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Dental Medicine Faculty, "Iuliu Hatieganu" University of Medicine and Pharmacy, Pasteur 4, 400349 Cluj-Napoca, Romania.
The use of Raman spectroscopy, particularly surface-enhanced Raman spectroscopy (SERS), offers a powerful tool for analyzing biochemical changes in biofluids. This study aims to assess the modifications occurring in saliva collected from patients before and after exposure to cone beam computed tomography (CBCT) and computed tomography (CT) imaging. SERS analysis revealed significantly amplified spectra in post-imaging samples compared to pre-imaging samples, with pronounced intensification of thiocyanate and opiorphin bands, which, together with proteins, dominated the spectra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!