Effect of cooking methods on metabolites of deep purple-fleshed sweetpotato.

Food Chem

Crops Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangzhou, Guangdong 510640, China. Electronic address:

Published: December 2023

AI Article Synopsis

  • The study investigates how steaming, boiling, and baking affect the metabolites in purple-fleshed sweetpotato, revealing that steaming significantly reduces starch while increasing soluble sugar content.
  • Steamed samples exhibited the most pronounced changes, whereas baked samples showed minimal impact on starch levels.
  • Overall, most non-volatile metabolites remained stable post-cooking, indicating that certain cooking methods can help preserve beneficial compounds in PFSP.

Article Abstract

The effects of different cooking methods on purple-fleshed sweetpotato (PFSP) metabolites were systematically explored, containing the changes of starch, soluble sugar, volatile organic compounds and non-target metabolites after steaming, boiling and baking. Compared to raw samples, the steamed samples showed the greatest changes in starch (degraded from 53.01% to 39.5%) and soluble sugar content (increased from 11.82% to 29.08%), while the baked samples showed insignificant changes in starch (51.06%). In total, 64 volatile organic compounds were identified in PFSP, with aldehydes decreasing and terpenes increasing after cooking. However, most of them were low in content and contributed weak aroma for PFSP. More importantly, 871 non-volatile metabolites were detected in PFSP, and 83.5% of which were well-preserved after cooking, while most of the changes were concentrated in phenylpropanoids, amino acids and carbohydrates. This study enriches the understanding of quality changes after PFSP cooking and helps consumers choose the right cooking method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2023.136931DOI Listing

Publication Analysis

Top Keywords

changes starch
12
cooking methods
8
purple-fleshed sweetpotato
8
soluble sugar
8
volatile organic
8
organic compounds
8
cooking
6
pfsp
5
changes
5
metabolites
4

Similar Publications

is a significant pathogen affecting shrimp and crab farming, particularly strains carrying genes associated with acute hepatopancreatic necrosis syndrome. However, the immune response of to infection remains unclear. To address this knowledge gap, an experiment was conducted to establish a infection model.

View Article and Find Full Text PDF

The solid-phase adsorption principles and fundamental mechanism of isobutyric acid, 1-octen-3-ol, and octanal (three key off-odor compounds of oyster peptides) were explored using electrospun octenyl succinylated starch-pullulan (OSS-PUL) nanofiber mat. The nanofiber mats had selective adsorption behaviors as indicated by the selective adsorption rates of isobutyric acid, 1-octen-3-ol, and octanal, which were 94.96%, 85.

View Article and Find Full Text PDF

Detecting changes of testicular interstitial cell membranes with a fluorescent probe after incubation and cryopreservation with cryoprotective agents.

Cryobiology

January 2025

The National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova st, 61000 Kharkiv, Ukraine; Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 6 Trinklera st, 61022 Kharkiv, Ukraine. Electronic address:

Membrane alterations are among central factors predetermining cell survival during cryopreservation. In the present research, we tested some serum-/xeno-free cryoprotective compositions including dimethyl sulfoxide (MeSO) and polymers for their osmotic impact and toxicity towards testicular interstitial cells (ICs). IC survival was determined after their contact with MeSO, dextran (D40), hydroxyethyl starch (HES), polyethylene glycols (PEG1500 and PEG400), or after cryopreservation and cryoprotective agent (CPA) removal.

View Article and Find Full Text PDF

The mechanisms of thermal processing techniques on modifying structural, functional and flour-processing properties of whole-grain highland barley.

Food Chem

December 2024

Glycomics and Glycan Bioengineering Research Center, College of Food Science &Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

The mechanisms underlying three thermal processing methods, namely hot-air drying, microwave irradiation, and heat fluidization, were systematically investigated to evaluate their effects on the structural, functional, and flour-processing properties of whole-grain highland barley. Starch granules were partially damaged when treated with hot-air drying and microwave irradiation. However, these granules were predominantly aggregated or encapsulated in proteins following heat fluidization.

View Article and Find Full Text PDF

Structural and physicochemical properties of debranched lotus seed starch treated with high hydrostatic pressure.

Int J Biol Macromol

December 2024

College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fuzhou, Fujian, PR China. Electronic address:

Lotus seeds represent a significant economic crop and are abundant in starch. To further enhance their application value, this study investigates the structural characteristics of lotus seed starch (LS) under the combined influence of pullulanase and high hydrostatic pressure (HHP). Pullulanase increased amylose content from 39.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!