A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Research development on electrolytes for magnesium-ion batteries. | LitMetric

Research development on electrolytes for magnesium-ion batteries.

Sci Bull (Beijing)

School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Published: August 2023

Magnesium-ion batteries (MIBs) are considered strong candidates for next-generation energy-storage systems owing to their high theoretical capacity, divalent nature and the natural abundancy of magnesium (Mg) resources on Earth. However, the development of MIBs has been mainly limited by the incompatibility of Mg anodes with several Mg salts and conventional organic-liquid electrolytes. Therefore, one major challenge faced by MIBs technology lies on developing safe electrolytes, which demonstrate appropriate electrochemical voltage window and compatibility with Mg anode. This review discusses the development of MIBs from the point-of-view of the electrolyte syntheses. A systematic assessment of promising electrolyte design strategies is proposed including liquid and solid-state electrolytes. Liquid-based electrolytes have been largely explored and can be categorized by solvent-type: organic solvent, aqueous solvent, and ionic-liquids. Organic-liquid electrolytes usually present high electrochemical and chemical stability but are rather dangerous, while aqueous electrolytes present high ionic conductivity and eco-friendliness but narrow electrochemical stability window. Some ionic-liquid electrolytes have proved outstanding performance but are fairly expensive. As alternative to liquid electrolytes, solid-state electrolytes are increasingly attractive to increase energy density and safety. However, improving the ionic conductivity of Mg ions in these types of electrolytes is extremely challenging. We believe that this comprehensive review will enable researchers to rapidly grasp the problems faced by electrolytes for MIBs and the electrolyte design strategies proposed to this date.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scib.2023.07.027DOI Listing

Publication Analysis

Top Keywords

electrolytes
11
magnesium-ion batteries
8
development mibs
8
organic-liquid electrolytes
8
electrolyte design
8
design strategies
8
strategies proposed
8
solid-state electrolytes
8
electrolytes high
8
ionic conductivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!