Full-scale anaerobic ammonium oxidation (anammox) engineering applications are vastly limited by the sensitivity of anammox bacteria to the complex mainstream ambience factors. Therefore, it is of great necessity to comprehensively summarize and overcome performance-related challenges in mainstream anammox process at the macro/micro level, including the macroscopic process variable regulation and microscopic biological metabolic enhancement. This article systematically reviewed the recent important advances in the enrichment and retention of anammox bacteria and main factors affecting metabolic regulation under mainstream conditions, and proposed key strategies for the related performance optimization. The characteristics and behavior mechanism of anammox consortia in response to mainstream environment were then discussed in details, and we revealed that the synergistic nitrogen metabolism of multi-functional bacterial genera based on anammox microbiome was conducive to mainstream anammox nitrogen removal processes. Finally, the critical outcomes of anammox extracellular electron transfer (EET) at the micro level were well presented, carbon-based conductive materials or exogenous electron shuttles can stimulate and mediate anammox EET in mainstream environments to optimize system performance from a micro perspective. Overall, this review advances the extensive implementation of mainstream anammox practice in future as well as shedding new light on the related EET and microbial mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.116770 | DOI Listing |
J Environ Manage
January 2025
Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
High salts concentrations in wastewater hinder its biological treatment. Recent research has investigated the inhibitory effect of salinity on the anammox process, mainly focusing on NaCl. Thus, the inhibition caused by multi-electrolytes salinity on freshwater anammox bacteria remains unclear.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Environment and Climate, Guangdong Engineering Research Center of Water Treatment Processes and Materials, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
Efficient nitrogen removal after organic capture is challenging through conventional nitrification-denitrification process. Two biofilm-based anoxic/oxic reactors, with a single intermittent zone (R1) or dual intermittent zones (R2), were compared in treating carbon-limited wastewater. Intermittent aeration integrated partial nitrification-anammox (PNA), partial denitrification-anammox (PDA), and denitrification, with anammox-related pathways contributing over 75% nitrogen removal in both reactors.
View Article and Find Full Text PDFBioresour Technol
January 2025
National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:
There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.
View Article and Find Full Text PDFWater Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFChemosphere
January 2025
Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!