Human monocytes and macrophages are two major myeloid cell subsets with similar and distinct functions in tissue homeostasis and immune responses. GM-CSF plays a fundamental role in myeloid cell differentiation and activation. Hence, we compared the effects of GM-CSF on the expression of several immune mediators by human monocytes and monocyte-derived macrophages obtained from healthy donors. We report that GM-CSF similarly elevated the expression of CD80 and ICAM-1 and reduced HLA-DR levels on both myeloid cell subsets. However, GM-CSF increased the percentage of macrophages expressing surface IL-15 but reduced the proportion of monocytes carrying surface IL-15. Moreover, GM-CSF significantly increased the secretion of IL-4, IL-6, TNF, CXCL10, and IL-27 by macrophages while reducing the secretion of IL-4 and CXCL10 by monocytes. We show that GM-CSF triggered ERK1/2, STAT3, STAT5, and SAPK/JNK pathways in both myeloid subsets. Using a pharmacological inhibitor (U0126) preventing ERK phosphorylation, we demonstrated that this pathway was involved in both the GM-CSF-induced increase and decrease of the percentage of IL-15 macrophages and monocytes, respectively. Moreover, ERK1/2 contributed to GM-CSF-triggered secretion of IL-4, IL-6, TNF, IL-27 and CXCL10 by macrophages. However, the ERK1/2 pathway exhibited different roles in monocytes and macrophages for the GM-CSF-mediated impact on surface makers (CD80, HLA-DR, and ICAM-1). Our data demonstrate that GM-CSF stimulation induces differential responses by human monocytes and monocyte-derived macrophages and that some but not all of these effects are ERK-dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imlet.2023.07.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!