Advancements in acoustic drug delivery for paranasal sinuses: A comprehensive review.

Int J Pharm

Department of Surgery-Otolaryngology Head and Neck Surgery, Adelaide Medical School, The University of Adelaide, Adelaide 5011, Australia; Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville, South Australia, Australia. Electronic address:

Published: September 2023

Chronic rhinosinusitis (CRS) impacts patients' quality of life and healthcare costs. Traditional methods of drug delivery, such as nasal sprays and irrigation, have limited effectiveness. Acoustic Drug Delivery (ADD) using a nebulizer offers targeted delivery of drug to the sinuses, which may improve the treatment of CRS. This review examines the influence of aerosol particle characteristics, aero-acoustic parameters, inlet flow conditions, and acoustic waves on sinus drug delivery. Key findings reveal that smaller particles improve the ADD efficiency, whereas larger sizes or increased density impair it. The oscillation amplitude of the air plug in the ostium is crucial for the ADD efficiency. Introducing acoustic waves at the NC-sinus system's resonance frequency improves aerosol deposition within sinuses. Future research should address advanced models, optimizing particle characteristics, investigating novel acoustic waveforms, incorporating patient-specific anatomy, and evaluating long-term safety and efficacy. Tackling these challenges, ADD could offer more effective and targeted treatments for sinus-related conditions such as CRS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2023.123277DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
acoustic drug
8
particle characteristics
8
acoustic waves
8
add efficiency
8
drug
5
delivery
5
advancements acoustic
4
delivery paranasal
4
paranasal sinuses
4

Similar Publications

Multi-Layered Microneedles Loaded with Microspheres.

AAPS PharmSciTech

January 2025

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia, 30332-0100, U.S.A..

Delivery of therapies into skin is attractive for medical indications including vaccination and treatment of dermatoses but is highly constrained by the stratum corneum barrier. Microneedle (MN) patches have emerged as a promising technology to enable non-invasive, intuitive, and low-cost skin delivery. When combined with biodegradable polymer formulations, MN patches can further enable controlled-release drug delivery without injection.

View Article and Find Full Text PDF

Chitosan nanoencapsulation of Turbinaria triquetra metabolites in the management of podocyturia in nephrotoxic rats.

Sci Rep

January 2025

Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute , National Research Centre, Dokki, Cairo, 12622, Egypt.

Cisplatin is a chemotherapeutic drug, which exhibits undesirable side effects. Chitosan nanoparticles are promising for drug delivery. The aim of this study was to determine the effect of the brown alga Turbinaria triquetra ethyl acetate fraction and polysaccharides, either loaded on chitosan nanoparticles or free, against podocyturia and cisplatin nephrotoxicity in rats.

View Article and Find Full Text PDF

Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.

View Article and Find Full Text PDF

Progressing nanotechnology to improve diagnosis and targeted therapy of Diabetic Retinopathy.

Biomed Pharmacother

January 2025

Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.

The inherent limitations of traditional treatments for Diabetic Retinopathy (DR) have spurred the development of various nanotechnologies, offering a safer and more efficient approach to managing the disease. Nanomedicine platforms present promising advancements in the diagnosis and treatment of DR by enhancing imaging capabilities, enabling targeted and controlled drug delivery. These innovations ultimately lead to more effective and personalized treatments with fewer side effects.

View Article and Find Full Text PDF

Janus LAAM-loaded electrospun fibrous buccal films for treating opioid use disorder.

Biomaterials

December 2024

Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:

The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!