Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study was conducted to determine the effect of indole acetic acid (IAA) and Citrate Capped Silver Nanoparticles (Cit-AgNPs) on various attributes of maize under induced salinity stress. Seeds of the said variety were collected from Cereal Crop Research Institute (CCRI) Pirsabaq, Nowshera, sterilized and sown in earthen pots filled with 2 kg silt and soil (1:2) in triplicates in the green house of the Botany Department, University of Peshawar. Nanoparticles were analyzed by scanning electron microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDX), Thermo-gravimetric analysis (TGA) and Differential thermal analysis (DTA). Results of SEM revealed spherical morphology of Cit-AgNPs while EDX showed various elemental composition. TGA showed dominant weight loss up to 300 °C while the DTA showed major exothermic peaks at 420 °C. High Salinity concentration (80 mM) imposed significant detrimental impacts by reducing the agronomic attributes, photosynthetic pigments, osmolytes and antioxidant enzymes, which was remarkably ameliorated by the foliar application of Cit-AgNPs and IAA. Agronomic attributes including leaf, root and shoot fresh and dry weight was improved by 52-74%, 43-69% and 36-79% in individual as well as combined treatments of IAA and NPs. Photosynthetic pigments were amplified by 35-63%, total osmolytes were augmented by 39-68% and antioxidant enzymes including SOD and POD were boosted by 42-57% and 37-62% respectively, in combined as well as individual application. Conclusively, Cit-AgNPs are considered as salt mitigating entities that enhance the tolerance level of crop plants along with IAA, which may be beneficial for the plants growing in saline stressed environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2023.107914 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!