A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vibro-acoustic sensing of tissue-instrument-interactions allows a differentiation of biological tissue in computerised palpation. | LitMetric

AI Article Synopsis

  • The study explores a new method to enhance tactile feedback in minimally invasive surgery using vibration signals from instrument-tissue interactions.
  • The feasibility study successfully differentiated between three non-animal and three animal tissue types by analyzing vibro-acoustic signals and applying machine learning classification techniques.
  • Results indicate that this vibration-based approach shows high accuracy in tissue differentiation, suggesting potential for improved tactile information in surgical procedures.

Article Abstract

Background: The shift towards minimally invasive surgery is associated with a significant reduction of tactile information available to the surgeon, with compensation strategies ranging from vision-based techniques to the integration of sensing concepts into surgical instruments. Tactile information is vital for palpation tasks such as the differentiation of tissues or the characterisation of surfaces. This work investigates a new sensing approach to derive palpation-related information from vibration signals originating from instrument-tissue-interactions.

Methods: We conducted a feasibility study to differentiate three non-animal and three animal tissue specimens based on palpation of the surface. A sensor configuration was mounted at the proximal end of a standard instrument opposite the tissue-interaction point. Vibro-acoustic signals of 1680 palpation events were acquired, and the time-varying spectrum was computed using Continuous-Wavelet-Transformation. For validation, nine spectral energy-related features were calculated for a subsequent classification using linear Support Vector Machine and k-Nearest-Neighbor.

Results: Indicators derived from the vibration signal are highly stable in a set of palpations belonging to the same tissue specimen, regardless of the palpating subject. Differences in the surface texture of the tissue specimens reflect in those indicators and can serve as a basis for differentiation. The classification following a supervised learning approach shows an accuracy of >93.8% for the three-tissue classification tasks and decreases to 78.8% for a combination of all six tissues.

Conclusions: Simple features derived from the vibro-acoustic signals facilitate the differentiation between biological tissues, showing the potential of the presented approach to provide information related to the interacting tissue. The results encourage further investigation of a yet little-exploited source of information in minimally invasive surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107272DOI Listing

Publication Analysis

Top Keywords

differentiation biological
8
minimally invasive
8
invasive surgery
8
tissue specimens
8
vibro-acoustic signals
8
tissue
5
vibro-acoustic sensing
4
sensing tissue-instrument-interactions
4
tissue-instrument-interactions allows
4
differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!