This study aimed to quantify and explain inter-subject variability in morniflumate pharmacokinetics and identify effective covariates through population pharmacokinetics modeling. Models were constructed using bioequivalence pharmacokinetics results from healthy Korean males and individual physiological and biochemical parameters. Additionally, we incorporated previously reported pharmacokinetics results of niflumic acid, a major active metabolite of morniflumate, to extend the established population pharmacokinetics model and predict niflumic acid pharmacokinetics. Moreover, we used quantitative reports of leukotriene B (LTB) synthesis inhibition in response to niflumic acid exposure to predict drug efficacy using Sigmoid E model. Population pharmacokinetics profiles of morniflumate were described using a multi-absorption (5-sequential) two-compartment model, and analysis of inter-individual variability suggested that volume of distribution in peripheral compartment was correlated with body mass index (BMI). Model simulation results showed that individuals with lower BMI had higher plasma concentrations of morniflumate and niflumic acid, resulting in increased and sustained inhibition of LTB synthesis. Under steady-state conditions, average plasma concentrations of morniflumate and niflumic acid were 2.66-2.68 times higher in group with a BMI of 17.36 kg/m compared to the group with a BMI of 28.41 kg/m. Additionally, inhibition of LTB synthesis was 1.02 times higher in group with a BMI of 17.36 kg/m compared to group with a BMI of 28.41 kg/m, and the fluctuation was significantly reduced from 6.06 to 0.01%. These findings suggest that the concentration of active metabolite in plasma following morniflumate exposure was lower in the obese group compared to the normal group, thus potentially reducing the drug's efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00210-023-02640-0DOI Listing

Publication Analysis

Top Keywords

niflumic acid
24
population pharmacokinetics
16
group bmi
16
active metabolite
12
ltb synthesis
12
pharmacokinetics
8
healthy korean
8
acid major
8
major active
8
plasma concentrations
8

Similar Publications

Degradation of fenamates.

Profiles Drug Subst Excip Relat Methodol

January 2025

Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan.

Fenamates are the most crucial non-steroidal anti-inflammatory drugs (NSAIDs) used to treat pain-related diseases. The clinically prescribed drugs of the fenamate group include mefenamic acid, tolfenamic acid, meclofenamic acid, flufenamic acid, and niflumic acid. Due to their widespread use, all these drugs are considered as the most common water and sewerage pollutants.

View Article and Find Full Text PDF

YAP/TAZ Inhibitor-Based Drug Delivery System for Selective Tumor Accumulation and Cancer Combination Therapy.

Biomacromolecules

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.

Article Synopsis
  • YAP and TAZ are crucial coactivators often overactive in cancer, promoting tumor growth and resistance to treatments.
  • Niflumic acid (NA), a known inhibitor of YAP/TAZ, has poor effectiveness due to its short half-life, prompting the development of NA-based prodrug polymers to improve its bioavailability.
  • The selected NA polymer formed micellar nanocarriers that effectively targeted tumors and worked alongside receptor tyrosine kinase inhibitors (RTKIs) like Dasatinib, enhancing breast cancer therapy outcomes.
View Article and Find Full Text PDF

Transcriptional enhanced associate domain (TEAD) transcription factors undergo auto-palmitoylation, which is critical to mediate their function and maintain stability. Targeting the palmitate binding pocket of TEAD holds considerable promise for drug discovery, and it can be characterised into three components: a conserved cysteine, a hydrophobic main pocket, and a hydrophilic side pocket. Endogenous palmitate and several known TEAD inhibitors interact with the cysteine and hydrophobic residues in the deep hydrophobic pocket.

View Article and Find Full Text PDF

The objective of our research was to determine the effects of xanthohumol (XN), a flavonoid isolated from hops (), and the anti-inflammatory drug niflumic acid (NA), separately and in combination with each other, on the proliferation of human cancer cells. Additionally, so as to understand the mechanism underlying the anticancer properties of the tested compounds, their effects on the biophysical parameters of a model membrane were assessed. The cells were incubated with XN and NA at various concentrations, either individually or in combination with each other.

View Article and Find Full Text PDF
Article Synopsis
  • The paper investigates the effectiveness of Polynomial Regression, Extreme Gradient Boosting, and LASSO models in predicting the density of supercritical carbon dioxide and the solubility of niflumic acid based on temperature and pressure.
  • It employs the Barnacles Mating Optimizer for hyperparameter optimization, resulting in high R-squared values for PR (0.99207 for SC-CO density) compared to XGB (0.92673) and LASSO (0.81917).
  • The findings highlight the potential of these machine learning models in accurately estimating drug solubility in supercritical CO, which could be valuable for the pharmaceutical industry.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!