Worldwide, many lives have been lost in the recent outbreak of coronavirus disease. The pathogen responsible for this disease takes advantage of the host machinery to replicate itself and, in turn, causes pathogenesis in humans. Human miRNAs are seen to have a major role in the pathogenesis and progression of viral diseases. Hence, an in-silico approach has been used in this study to uncover the role of miRNAs and their target genes in coronavirus disease pathogenesis. This study attempts to perform the miRNA seq data analysis to identify the potential differentially expressed miRNAs. Considering only the experimentally proven interaction databases TarBase, miRTarBase, and miRecords, the target genes of the miRNAs have been identified from the mirNET analytics platform. The identified hub genes were subjected to gene ontology and pathway enrichment analysis using EnrichR. It is found that a total of 9 miRNAs are deregulated, out of which 2 were upregulated (hsa-mir-3614-5p and hsa-mir-3614-3p) and 7 were downregulated (hsa-mir-17-5p, hsa-mir-106a-5p, hsa-mir-17-3p, hsa-mir-181d-5p, hsa-mir-93-3p, hsa-mir-28-5p, and hsa-mir-100-5p). These miRNAs help us to classify the diseased and healthy control patients accurately. Moreover, it is also found that crucial target genes (UBC and UBB) of 4 signature miRNAs interact with viral replicase polyprotein 1ab of SARS-Coronavirus. As a result, it is noted that the virus hijacks key immune pathways like various cancer and virus infection pathways and molecular functions such as ubiquitin ligase binding and transcription corepressor and coregulator binding.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-023-10458-xDOI Listing

Publication Analysis

Top Keywords

target genes
12
identify potential
8
coronavirus disease
8
mirnas
7
machine learning
4
learning approach
4
approach identify
4
potential mirna-gene
4
mirna-gene regulatory
4
regulatory network
4

Similar Publications

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD.

View Article and Find Full Text PDF

ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration.

Inflamm Res

January 2025

Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.

Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.

Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

The PI4K2A gene positively regulates lipid synthesis in bovine mammary epithelial cells and attenuates the inhibitory effect of t10,c12-CLA on lipid synthesis.

Sci Rep

January 2025

College of Animal Science and Technology, Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Yinchuan, 750021, China.

Currently, the identification of valuable candidate genes affecting milk fat synthesis in dairy cows is still limited, and the specific regulatory mechanism is still unknown. In this study, we used primary bovine mammary epithelial cells(BMECs)as a model and utilized overexpression and knockdown techniques for the PI4K2A gene to investigate the specific mechanisms by which it regulates lipid metabolism in BMECs. We studied whether PI4K2A regulates the inhibition of trans-10, cis-12 conjugated linoleic acid (t10,c12-CLA) on lipid synthesis in BMECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!