Age-related decline in physical and cognitive functions are facts of life that do not affect everyone to the same extent. We had reported earlier that such cognitive decline is both sex- and context-dependent. Moreover, age-associated ultrastructural changes were observed in the hippocampus of male rats. In this study, we sought to determine potential differences in ultrastructural changes between male and female rats at various stages of life. We performed quantitative electron microscopic evaluation of hippocampal CA1 region, an area intimately involved in cognitive behavior, in both male and female adolescent, adult and old Wistar rats. Specifically, we measured the number of docking synaptic vesicles in axo-dendritic synapses, the length of active zone as well as the total number of synaptic vesicles. Distinct age- and sex-dependent effects were observed in several parameters. Thus, adult female rats had the lowest synaptic active zone compared to both adolescent and old female rats. Moreover, the same parameter was significantly lower in adult and old female rats compared to their male counterparts. On the other hand, old male rats had significantly lower number of total synaptic vesicles compared to both adolescent and adult male rats as well as compared to their female counterparts. Taken together, it may be suggested that age- and sex-dependent ultrastructural changes in the hippocampus may underlie at least some of the differences in cognitive functions among these groups.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10522-023-10052-zDOI Listing

Publication Analysis

Top Keywords

female rats
20
male female
12
ultrastructural changes
12
male rats
12
synaptic vesicles
12
rats
9
cognitive functions
8
adolescent adult
8
active zone
8
age- sex-dependent
8

Similar Publications

Actively avoiding danger is necessary for survival. Most research on active avoidance has focused on the behavioral and neurobiological processes when individuals learn to avoid alone, within a solitary context. Therefore, little is known about how social context affects active avoidance.

View Article and Find Full Text PDF

Background: Cognitive impairment and attention deficit disorder have been on the rise among generations in recent times. A significant portion of the brain involved in learning and cognition is the hippocampus. Its development begins in utero till weaning.

View Article and Find Full Text PDF

Background: The lactation period is a crucial period where the nutritional status and the mother's environment influence milk production, impacting organ differentiation, function, and structure in the baby's body.

Aim: The study aimed to determine the impact of providing lactating rats with quail egg supplements enriched with marine macroalgae on their physiological condition (blood cells, lipids, blood glucose, antioxidant activity, and prolactin hormone levels) and the growth of their offspring.

Methods: The study involved 25 lactating Sprague Dawley white rats aged 3 months old and weighing approximately 200 g divided into five treatment groups thus; T0 as the control, T1 with quail eggs enriched with commercial feed, T2 with quail eggs enriched with 3% of marine macroalgae, T3 with quail eggs enriched with 4% of marine macroalgae, and T4 with quail eggs enriched with 5% of marine macroalgae, which received one quail egg for 21 days.

View Article and Find Full Text PDF

Cellular distribution of some intermediate filaments in the rat mammary gland during pregnancy, lactation and involution.

Pol J Vet Sci

December 2024

Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.

Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.

View Article and Find Full Text PDF

Background: Polycystic ovary syndrome (PCOS) is a complex endocrine disorder with various contributing factors. Understanding the molecular mechanisms underlying PCOS is essential for developing effective treatments. This study aimed to identify hub genes and investigate potential molecular mechanisms associated with PCOS through a combination of bioinformatics analysis and Mendelian randomization (MR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!