A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Innovative approach to waste management: utilizing stabilized municipal solid waste in road infrastructure. | LitMetric

Innovative approach to waste management: utilizing stabilized municipal solid waste in road infrastructure.

Environ Sci Pollut Res Int

Department of Civil Engineering, Jamia Millia Islamia, New Delhi, 110025, India.

Published: February 2024

In recent years, a sudden upsurge in the quantity of municipal solid waste (MSW) has been observed, and the status quo demands a constructive and economically viable solution. The use of stabilized municipal solid waste (SMSW) in road construction can help in reducing the burden on landfills and waste management authorities. In the existing study, SMSW was accumulated from the Okhla landfill which is situated in New Delhi that is rich in an organic content. This SMSW was then blended with soil (5%, 10%, and 15%) and bottom ash with varying percentages (10%, 20%, 30%) individually and a mix of soil and bottom ash in the ratio of 1:1 to reduce the content of organic matter. The blended sample was then tested to check its compaction value, California bearing ratio (CBR), unconfined compressive strength (UCS), durability, and scanning electron microstructure (SEM). The results indicated that the addition of bottom ash to SMSW decreases the maximum dry unit weight that varies between 1.65 and 1.51 KN/m while this value reduces to 1.72 to 1.67 KN/m in the case of the bottom ash-soil blend. Also, CBR value reduces to 25.50 to 18.00% in case of bottom ash and 25.89 to 21.92% for bottom ash-soil samples and inverse in the case of SMSW samples blended with soil ranges between 19.95 and 22.59%. The California bearing ratio value of all samples under soaked condition meets the minimum criteria (> 10%) as specified in IRC SP-72 for low-volume roads, but at the same time failed to meet the durability specifications. Thus, it is recommended to use this soil subgrade material in arid regions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-28967-yDOI Listing

Publication Analysis

Top Keywords

bottom ash
16
municipal solid
12
solid waste
12
waste management
8
stabilized municipal
8
blended soil
8
california bearing
8
bearing ratio
8
case bottom
8
bottom ash-soil
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!