In this article, the enrichment of graphene and graphene oxide with free radicals through their functionalization with tyrosine is studied. In contrast with what is commonly observed in the functionalization of graphene with organic species the addition of tyrosine radicals on to the graphene substrate led to a remarkable increase of the aromatic character as indicated by the spectroscopic data. Similar behaviour was observed for the functionalization of graphene oxide. In addition, a brief analysis of the tyrosine functionalized graphene with EPR spectroscopy showed a remarkable enhancement of the spin density that could be useful in spintronics.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202301720DOI Listing

Publication Analysis

Top Keywords

graphene epr
8
graphene oxide
8
observed functionalization
8
functionalization graphene
8
graphene
6
spin-injection graphene
4
epr raman
4
raman study
4
study article
4
article enrichment
4

Similar Publications

In response to the challenges of food spoilage and water pollution caused by pathogenic microorganisms, CeO/g-CN nanocomposites were synthesized via one-step calcination using thiourea and urea as precursors. Steady-state photoluminescence (PL) spectroscopy analysis demonstrated that 8 wt% CeO/g-CN exhibited superior electron-hole separation efficiency. Quantitative antimicrobial assays demonstrated that the nanocomposites displayed enhanced bactericidal activity against , , and .

View Article and Find Full Text PDF

Activation potential decreasing of iron oxide/graphite felt cathode by introducing Mn in electrochemical Fenton-like reactions.

Chemosphere

December 2024

School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China. Electronic address:

In electrochemical advanced oxidation processes (EAOPs), energy consumption cannot be ignored. In this work, Mn-Fe oxide/graphite felt (GF) cathodes were synthesized by in situ reduction and low temperature calcination. The obtained Mn-Fe oxide/GF was used as cathodes to activate peroxymonosulfate (PMS) for atrazine (ATZ) degradation in the EAOPs system.

View Article and Find Full Text PDF

Metallic lithium deposition processes in NCM811∥graphite full cells during extreme-fast charging of 4 C (fully charged within 15 min) are detected via electron paramagnetic resonance (EPR) and EPR imaging over hundreds of cycles to quantify lithium deposits and visualize their spatial distribution. EPR imaging shows that constant-voltage charge generates loose Li dendrites with divergent growth whereas overcharge leads to long dendrites with vertical growth, and these Li deposits accumulate at the anode edges, which could deplete the Li resource at the cathode edges. Moreover, quantitative EPR indicates that the stripping current correlates to the deposit surface areas, while the reintercalation current depends on the contact areas between plated Li and graphite.

View Article and Find Full Text PDF

The widely used dyes, Basic fuchsin (BF) and Bismarck brown Y (BBY), pose significant risks to water resources and human health, necessitating efficient removal methods. Semiconductor-based heterogeneous photocatalysis offers an eco-friendly solution. However, improving the photocatalyst's efficiency remains a challenge.

View Article and Find Full Text PDF

Heterogeneous composite catalysts have gained significant attention in recent years due to their cleanliness, high efficiency, and stable performance. However, the difficulty of recovery and high cost have always limited the development of heterogeneous composite catalysts. Herein, flexible lignin-based carbon fiber (LCF) membranes with easy recovery and low cost were prepared by electrospinning and carbonization using rice straw lignin waste and polyacrylonitrile (PAN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!