The optimized physical adhesion between bees' leg hairs and pollen grains-whereby the latter's diameter aligns with the spacing between the hairs-has previously inspired the development of a biomimetic drug dressing. Combining this optimized process with the improved natural mussels' adhesion in wet environments in a dual biomimetic process, it is herein proposed the fabrication of a natural-derived micropatterned hydrogel patch of methacrylated laminarin (LAM-MET), with enriched drug content and improved adhesiveness, suitable for applications like wound healing. Enhanced adhesion is accomplished by modifying LAM-MET with hydroxypyridinone groups, following the patch microfabrication by soft lithography and UV/vis-irradiation, resulting in a membrane with micropillars with a high aspect ratio. Following the biomimetics rational, a drug patch is engineered by combining the microfabricated dressing with drug particles milled to fit the spaces between pillars. Controlled drug release is achieved, together with inherent antibacterial activity against Escherichia coli and Pseudomonas aeruginosa, and enhanced biocompatibility using the bare micropatterned patches. This new class of biomimetic dressings overcomes the challenges of current patches, like poor mechanical properties and biocompatibility, limited adhesiveness and drug dosage, and lack of prolonged antimicrobial activity, opening new insights for the development of high drug-loaded dressings with improved patient compliance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202301513 | DOI Listing |
Gels
December 2024
Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China.
Many tissues exhibit structural anisotropy, which imparts orientation-specific properties and functions. However, recapitulating the cellular patterns found in anisotropic tissues presents a remarkable challenge, particularly when using soft and wet hydrogels. Herein, we develop self-assembled anisotropic magnetic FeO micropatterns on polyethylene glycol hydrogels utilizing dipole-dipole interactions.
View Article and Find Full Text PDFGels
November 2024
Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile.
The preparation of sophisticated hierarchically structured and cytocompatible hydrogel scaffolds is presented. For this purpose, a photosensitive resin was developed, printability was evaluated, and the optimal conditions for 3D printing were investigated. The design and fabrication by additive manufacturing of tailor-made porous scaffolds were combined with the formation of surface wrinkled micropatterns.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
Controlling cellular shape with micropatterning extracellular matrix (ECM) proteins on hydrogels has been shown to improve the reproducibility of the cell structure, enhancing our ability to collect statistics on single-cell behaviors. Patterning methods have advanced efforts in developing human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as a promising human model for studies of the heart structure, function, and disease. Patterned single hiPSC-CMs have exhibited phenotypes closer to mature, primary CMs across several metrics, including sarcomere alignment and contractility, area and aspect ratio, and force production.
View Article and Find Full Text PDFNature
December 2024
Biological Design Center, Boston University, Boston, MA, USA.
Natural tissues are composed of diverse cells and extracellular materials whose arrangements across several length scales-from subcellular lengths (micrometre) to the organ scale (centimetre)-regulate biological functions. Tissue-fabrication methods have progressed to large constructs, for example, through stereolithography and nozzle-based bioprinting, and subcellular resolution through subtractive photoablation. However, additive bioprinting struggles with sub-nozzle/voxel features and photoablation is restricted to small volumes by prohibitive heat generation and time.
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
Microextrusion printing is widely used to precisely manufacture microdevices, microphysiological systems, and biological constructs that feature micropatterns and microstructures consisting of various materials. This method is particularly useful for creating biological models that recapitulate in vivo-like cellular microenvironments. Although there is a recent demand for high-throughput data from a single in vitro system, it remains challenging to fabricate multiple models with a small volume of bioinks in a stable and precise manner due to the spreading and evaporation issues of the extruded hydrogel.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!