Dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV) virus infections are widespread throughout the Rio de Janeiro state. The co-circulation of these emergent arboviruses constitutes a serious public health problem, resulting in outbreaks that can spatially and temporally overlap. Environmental conditions favor the presence, maintenance, and expansion of , the primary vector of these urban arboviruses. This study assessed the detection of clusters of urban arboviruses in the Rio de Janeiro state from 2010 to 2019. Notified cases of dengue, chikungunya, and Zika were grouped by year according to the onset of symptoms and their municipality of residence. The study period recorded the highest number of dengue epidemics in the state along with the simultaneous circulation of chikungunya and Zika viruses. The analyzes showed that the central municipalities of the metropolitan regions were associated with higher risk areas. Central municipalities in metropolitan regions were the first most likely clusters for dengue and Zika, and the second most likely cluster for chikungunya. Furthermore, the northwest and north regions were comprised clusters with the highest relative risk for the three arboviruses, underscoring the impact of these arboviruses in less densely populated regions of Brazil. The identification of high-risk areas over time highlights the need for effective control measures, targeted prevention and control interventions for these urban arboviral diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384805 | PMC |
http://dx.doi.org/10.3390/v15071496 | DOI Listing |
Front Physiol
December 2024
Institute of Disinfection and Pest Control, Beijing Center for Disease Prevention and Control, Beijing, China.
Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.
View Article and Find Full Text PDFInsect Biochem Mol Biol
December 2024
Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA. Electronic address:
Sci Rep
December 2024
Public Health and community medicine Department, Theodor Bilharz Research Institute, Helwan University, Cairo, Egypt.
Infectious diseases significantly impact both public health and economic stability, underscoring the critical need for precise outbreak predictions to effictively mitigate their impact. This study applies advanced machine learning techniques to forecast outbreaks of Dengue, Chikungunya, and Zika, utilizing a comprehensive dataset comprising climate and socioeconomic data. Spanning the years 2007 to 2017, the dataset includes 1716 instances characterized by 27 distinct features.
View Article and Find Full Text PDFPest Manag Sci
December 2024
The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.
Background: Aedes aegypti is a primary urban vector of dengue, yellow fever, Zika and chikungunya worldwide. Pyrethroid insecticides are the most effective insecticides for controlling Ae. aegypti.
View Article and Find Full Text PDFJ Vector Borne Dis
October 2024
Programa de Pós-Graduação em Microbiologia, Parasitologia e Patologia, Departamento de Patologia, Laboratório de Parasitologia Molecular, Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil.
Aedes aegypti and Aedes albopictus are the main vectors of arboviruses such as dengue, Zika virus, and chikungunya. Ae. aegypti is a widely spread mosquito in tropical and subtropical regions, whereas Ae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!