In this paper, a microwave monolithic integrated circuit (MMIC) high-power amplifier (HPA) for Ku-band active radar applications based on gallium nitride on silicon (GaN-on-Si) is presented. The design is based on a three-stage architecture and was implemented using the D01GH technology provided by OMMIC foundry. Details on the architecture definition and design process to maximize delivered power are provided along with stability and thermal analyses. To optimize the amplifier performance, an asymmetry was included at the output combiner. Experimental results show that the HPA achieves a 39.5 dBm pulsed-mode output power, a peak linear gain of 23 dB, a drain efficiency of 27%, and good input/output matching in the 16-19 GHz frequency range. The chip area is 5 × 3.5 mm2 and for the measurements was mounted on a custom-made module. These results demonstrate that GaN-on-Si-based Solid-State Power Amplifiers (SSPAs) can be used for the implementation of Ku-band active radars.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385402PMC
http://dx.doi.org/10.3390/s23146377DOI Listing

Publication Analysis

Top Keywords

output combiner
8
ku-band active
8
ku-band gan-on-si
4
gan-on-si mmic
4
power
4
mmic power
4
power amplifier
4
amplifier asymmetrical
4
asymmetrical output
4
combiner paper
4

Similar Publications

High-power mid-infrared fiber lasers, featuring superior beam quality and good power-scaling ability, have a few important applications in material processing, medical surgery, and molecule spectroscopy. The high-power pump light combiner, as one of the key elements for constructing a mid-infrared fiber laser, is crucial for the laser performance. While some advanced side-pump combiners based on fluoride fiber have been reported in recent literatures, the thermal stability of the fluoride fiber combiner, which is closely-related to its power-scaling capability, is a long-living challenge.

View Article and Find Full Text PDF

A fiber combiner is a flexible optical component that can superimpose the power of multiple lasers to yield much higher output power than the available power from a single laser source. In this work, we report the design, fabrication, and characterization of a high-efficiency mid-infrared 3 × 1 chalcogenide glass fiber combiner. For the first time, the fiber combiner has been fabricated based on Ge-As-S glass, which has a significantly higher damage threshold than the conventionally used As-S glass.

View Article and Find Full Text PDF

The fiber signal combiner with high output power and high beam quality is an urgent problem to be solved. In this paper, the structure of the double-cone (both the input fibers and the output fiber are tapered) is proposed to improve the beam quality of the fiber signal combiner, and it is verified by simulation and experiment, with the output fiber of 50 µm core tapered to 35 µm as an example. The prepared 3 × 1 double-cone fiber signal combiner reaches the output power of 8.

View Article and Find Full Text PDF

Photonic reservoir computing has been used to efficiently solve difficult and time-consuming problems. The physical implementations of such reservoirs offer low power consumption and fast processing speed due to their photonic nature. In this paper, we investigate the computational capacity of a passive spatially distributed reservoir computing system.

View Article and Find Full Text PDF

This paper presents a method to enhance extended interaction oscillator (EIO) output power based on a dual-cavity parallel structure (DCPS). This stucture consists of two conventional ladder-line structures in parallel through a connecting structure, which improves the coupling efficiency between the cavities. The dual output power fusion structure employs an H-T type combiner as the output coupler, which can effectively combine the two input waves in phase to further increase the output power.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!