Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The absence of a reliable Global Navigation Satellite System (GNSS) signal leads to degraded position robustness in standalone receivers. To address this issue, integrating GNSS with inertial measurement units (IMUs) can improve positioning accuracy. This article analyzes the performance of tightly coupled GNSS/IMU integration, specifically the forward Kalman filter and smoothing algorithm, using both single and network GNSS stations and the post-processed kinematic (PPK) method. Additionally, the impact of simulated GNSS signal outage on exterior orientation parameters (EOPs) solutions is investigated. Results demonstrate that the smoothing algorithm enhances positioning uncertainty (RMSE) for north, east, and heading by approximately 17-43% (e.g., it improves north RMSE from 51 mm to a range of 42 mm, representing a 17% improvement). Orientation uncertainty is reduced by about 60% for roll, pitch, and heading. Moreover, the algorithm mitigates the effects of GNSS signal outage, improving position uncertainty by up to 95% and orientation uncertainty by up to 60% using the smoothing algorithm instead of the forward Kalman filter for signal outages up to 180 s.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383582 | PMC |
http://dx.doi.org/10.3390/s23146361 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!