A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Compact and Low-Power SoC Design for Spiking Neural Network Based on Current Multiplier Charge Injector Synapse. | LitMetric

A Compact and Low-Power SoC Design for Spiking Neural Network Based on Current Multiplier Charge Injector Synapse.

Sensors (Basel)

Department of Electronics, College of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.

Published: July 2023

This paper presents a compact analog system-on-chip (SoC) implementation of a spiking neural network (SNN) for low-power Internet of Things (IoT) applications. The low-power implementation of an SNN SoC requires the optimization of not only the SNN model but also the architecture and circuit designs. In this work, the SNN has been constituted from the analog neuron and synaptic circuits, which are designed to optimize both the chip area and power consumption. The proposed synapse circuit is based on a current multiplier charge injector (CMCI) circuit, which can significantly reduce power consumption and chip area compared with the previous work while allowing for design scalability for higher resolutions. The proposed neuron circuit employs an asynchronous structure, which makes it highly sensitive to input synaptic currents and enables it to achieve higher energy efficiency. To compare the performance of the proposed SoC in its area and power consumption, we implemented a digital SoC for the same SNN model in FPGA. The proposed SNN chip, when trained using the MNIST dataset, achieves a classification accuracy of 96.56%. The presented SNN chip has been implemented using a 65 nm CMOS process for fabrication. The entire chip occupies 0.96 mm and consumes an average power of 530 μW, which is 200 times lower than its digital counterpart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383375PMC
http://dx.doi.org/10.3390/s23146275DOI Listing

Publication Analysis

Top Keywords

power consumption
12
spiking neural
8
neural network
8
based current
8
current multiplier
8
multiplier charge
8
charge injector
8
snn model
8
chip area
8
area power
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!