A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Double Mutation in the Gene Confers a High Level of Resistance to Mesosulfuron-Methyl in Shepherd's-Purse. | LitMetric

Shepherd's-purse (), a globally distributed noxious weed species often found in wheat, has evolved resistance to ALS-inhibiting herbicides mainly due to single mutations in the gene. In the present study, dose-response bioassays showed that a shepherd's-purse population (R), collected from Xinghua, Jiangsu Province, China, had high level of resistance to the ALS-inhibiting herbicide, mesosulfuron-methyl (800-fold), and even much higher resistance levels to other reported ALS-inhibiting herbicides, tribenuron-methyl (1313-fold), bensulfuron-methyl (969-fold) and penoxsulam (613-fold). Sequencing of the open reading frame of the gene revealed a double gene mutation (Pro197-Ser plus Trp574-Leu) conferring the high resistance in the R plants. Docking analysis of the ALS protein and mesosulfuron-methyl predicts that the two amino acid substitutions in the R samples reduces the binding energy to the herbicide by decreasing the hydrogen bonds (H-bonds) and other interactions, thus endowing resistance to ALS-inhibiting herbicides. These results demonstrate that the double ALS mutation confers high resistance levels to ALS-inhibiting herbicides. To our knowledge, this is the first evidence of the double ALS mutation in shepherd's-purse endowing ALS-inhibiting herbicide resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386087PMC
http://dx.doi.org/10.3390/plants12142730DOI Listing

Publication Analysis

Top Keywords

als-inhibiting herbicides
16
resistance als-inhibiting
12
confers high
8
high level
8
resistance
8
level resistance
8
als-inhibiting herbicide
8
resistance levels
8
high resistance
8
double als
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!