Cotton leaf curl disease (CLCuD) is a significant constraint to the economies of Pakistan and India. The disease is caused by different begomoviruses (genus , family ) in association with a disease-specific betasatellite. However, another satellite-like molecule, alphasatellite, is occasionally found associated with this disease complex. A quantitative real-time PCR assay for the virus/satellite components causing CLCuD was used to investigate the performance of selected cotton varieties in the 2014-2015 National Coordinated Varietal Trials (NCVT) in Pakistan. The DNA levels of virus and satellites in cotton plants were determined for five cotton varieties across three geographic locations and compared with seed cotton yield (SCY) as a measure of the plant performance. The highest virus titer was detected in B-10 (0.972 ng·µg) from Vehari and the lowest in B-3 (0.006 ng·µg) from Faisalabad. Likewise, the highest alphasatellite titer was found in B-1 (0.055 ng·µg) from Vehari and the lowest in B-1 and B-2 (0.001 ng·µg) from Faisalabad. The highest betasatellite titer was found in B-23 (1.156 ng·µg) from Faisalabad and the lowest in B-12 (0.072 ng·µg) from Multan. Virus/satellite DNA levels, symptoms, and SCY were found to be highly variable between the varieties and between the locations. Nevertheless, statistical analysis of the results suggested that betasatellite DNA levels, rather than virus or alphasatellite DNA levels, were the important variable in plant performance, having an inverse relationship with SCY (-0.447). This quantitative assay will be useful in breeding programs for development of virus resistant plants and varietal trials, such as the NCVT, to select suitable varieties of cotton with mild (preferably no) symptoms and low (preferably no) virus/satellite. At present, no such molecular techniques are used in resistance breeding programs or varietal trials in Pakistan.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385359PMC
http://dx.doi.org/10.3390/plants12142645DOI Listing

Publication Analysis

Top Keywords

dna levels
16
varietal trials
12
ng·µg faisalabad
12
causing clcud
8
cotton varieties
8
trials ncvt
8
levels virus
8
plant performance
8
ng·µg vehari
8
vehari lowest
8

Similar Publications

Protein Phosphatase 2A B'α and B'β promote pollen wall construction partially through BZR1-activated CEP1 in Arabidopsis.

J Exp Bot

January 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology; Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation; Hebei Key Laboratory of Molecular and Cellular Biology; College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China.

A well-constructed pollen wall is essential for pollen fertility, which relies on the contribution of tapetum. Our results demonstrate an essential role of the tapetum-expressed protein phosphatase 2A (PP2A) B'α and B'β in pollen wall formation. The b'aβ double mutant pollen grains harbored sticky remnants and tectum breakages, resulting in failed release.

View Article and Find Full Text PDF

Quantifying DNA Lesions and Circulating Free DNA: Diagnostic Marker for Electropathology and Clinical Stage of AF.

JACC Clin Electrophysiol

December 2024

Physiology, Amsterdam Cardiovascular Sciences, Heart Failure, and Arrhythmias, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Electronic address:

Background: Atrial fibrillation (AF) persistence is associated with molecular remodeling that fuels electrical conduction abnormalities in atrial tissue. Previous research revealed DNA damage as a molecular driver of AF.

Objectives: This study sought to explore the diagnostic value of DNA damage in atrial tissue and blood samples as an indicator of the prevalence of electrical conduction abnormalities and stage of AF.

View Article and Find Full Text PDF

GDBr: genomic signature interpretation tool for DNA double-strand break repair mechanisms.

Nucleic Acids Res

January 2025

Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

Large genetic variants can be generated via homologous recombination (HR), such as polymerase theta-mediated end joining (TMEJ) or single-strand annealing (SSA). Given that these HR-based mechanisms leave specific genomic signatures, we developed GDBr, a genomic signature interpretation tool for DNA double-strand break repair mechanisms using high-quality genome assemblies. We applied GDBr to a draft human pangenome reference.

View Article and Find Full Text PDF

Background: A decline in skeletal muscle mass and function known as skeletal muscle sarcopenia is an inevitable consequence of aging. Sarcopenia is a major cause of decreased muscle strength, physical frailty and increased muscle fatigability, contributing significantly to an increased risk of physical disability and functional dependence among the elderly. There remains a significant need for a novel therapy that can improve sarcopenia and related problems in aging.

View Article and Find Full Text PDF

: Male infertility is influenced by physiological factors like age, as well as lifestyle factors, including physical activity. However, the specific impact of sport activity on semen parameters, and thus on male fertility, remains unclear. Specifically, the aim of this systematic review is to evaluate how an intense regime of training may affect sperm parameters in professional and non-profession athletes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!