Hand tendon/ligament structural ruptures (tears, lacerations) often require surgical reconstruction and grafting, for the restauration of finger mechanical functions. Clinical-grade human primary progenitor tenocytes (FE002 cryopreserved progenitor cell source) have been previously proposed for diversified therapeutic uses within allogeneic tissue engineering and regenerative medicine applications. The aim of this study was to establish bioengineering and surgical proofs-of-concept for an artificial graft (Neoligaments Infinity-Lock 3 device) bearing cultured and viable FE002 primary progenitor tenocytes. Technical optimization and in vitro validation work showed that the combined preparations could be rapidly obtained (dynamic cell seeding of 10 cells/cm of scaffold, 7 days of co-culture). The studied standardized transplants presented homogeneous cellular colonization in vitro (cellular alignment/coating along the scaffold fibers) and other critical functional attributes (tendon extracellular matrix component such as collagen I and aggrecan synthesis/deposition along the scaffold fibers). Notably, major safety- and functionality-related parameters/attributes of the FE002 cells/finished combination products were compiled and set forth (telomerase activity, adhesion and biological coating potentials). A two-part human cadaveric study enabled to establish clinical protocols for hand ligament cell-assisted surgery (ligamento-suspension plasty after trapeziectomy, thumb metacarpo-phalangeal ulnar collateral ligamentoplasty). Importantly, the aggregated experimental results clearly confirmed that functional and clinically usable allogeneic cell-scaffold combination products could be rapidly and robustly prepared for bio-enhanced hand ligament reconstruction. Major advantages of the considered bioengineered graft were discussed in light of existing clinical protocols based on autologous tenocyte transplantation. Overall, this study established proofs-of-concept for the translational development of a functional tissue engineering protocol in allogeneic musculoskeletal regenerative medicine, in view of a pilot clinical trial.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385025 | PMC |
http://dx.doi.org/10.3390/pharmaceutics15071873 | DOI Listing |
Immunity
December 2024
Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA. Electronic address:
Whereas terminally exhausted T (Tex_term) cells retain anti-tumor cytotoxic functions, the frequencies of stem-like progenitor-exhausted T (Tex_prog) cells better reflect immunotherapeutic responsivity. Here, we examined the intratumoral cellular interactions that govern the transition to terminal T cell exhaustion. We defined a metric reflecting the intratumoral progenitor exhaustion-to-terminal exhaustion ratio (PETER), which decreased with tumor progression in solid cancers.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Jiangxi Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Vascular Remodeling Diseases, Jiangxi University of Chinese Medicine, Nanchang 330006, China; National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herb Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China; Department of Cardiovascular Sciences and Centre for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA. Electronic address:
Trained immunity represents a functional state of the innate immune response, characterized by enduring epigenetic reprogramming of innate immune cells. This phenomenon facilitates a sustained and advantageous reaction of myeloid cells to subsequent challenges. Bletilla striata polysaccharide (BSP) is the primary active component of Bletilla striata, mainly consisting of mannose and glucose in its chemical structure.
View Article and Find Full Text PDFMetabol Open
December 2024
Post-graduate Program in Chemical Biology - Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of São Paulo - UNIFESP, Diadema, Brazil.
In obesity, C-C chemokine ligand 2 (CCL2) plays a critical role in recruiting macrophages to white adipose tissue (WAT), contributing to chronic inflammation. In this study, we sought to explore the effects of fish oil (FO) on CCL2 expression and histone (H3K27)-modifying enzymes in both human model of preadipocytes and primary adipose-derived stem cells (ASCs). Present findings in preadipocytes lineage evidenced that lipopolysaccharide (LPS) increased (∼5.
View Article and Find Full Text PDFJ Biol Chem
December 2024
University of Stuttgart, Institute of Biomedical Genetics, Department of Eukaryotic Genetics, Allmandring 31, 70569 Stuttgart, Germany. Electronic address:
Erythropoiesis is controlled by transcription factors that recruit epigenetic cofactors to establish and maintain erythrocyte-specific gene expression patterns while repressing alternative lineage commitment. The transcription factor TAL1 is critical for establishing erythroid gene expression. It acts as an activator or repressor of genes, depending on associated epigenetic cofactors.
View Article and Find Full Text PDFMedulloblastoma (MB) is the most prevalent malignant brain tumor in children, exhibiting clinical and genomic heterogeneity. Of the four major subgroups, Group 3 tumors (MYC-MB), display high levels of MYC and metastasis rates. Despite treatment with surgery, radiation, and chemotherapy, patients with Group 3 MB are more likely to develop aggressive recurrent tumors with poor survival.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!