infections, such as those caused by hepatitis C (HCV) and dengue viruses (DENVs), represent global health risks. Infected people are in danger of developing chronic liver failure or hemorrhagic fever, both of which can be fatal if not treated. The tropical parasites and cause enormous socioeconomic burdens in Sub-Saharan Africa and Latin America. Anti-HCV chemotherapy has severe adverse effects and is expensive, whereas dengue has no clinically authorized treatment. Antiparasitic medicines are often toxic and difficult to administer, and treatment failures are widely reported. There is an urgent need for new chemotherapies. Based on our previous research, we have undertaken structural modification of lead compound with the goal of producing derivatives with both antiviral and trypanocidal activity. The novel spirocarbocyclic-substituted hydantoin analogs were designed, synthesized, and tested for antiviral activity against three HCV genotypes (1b, 3a, 4a), DENV, yellow fever virus (YFV), and two trypanosome species (, ). The optimization was successful and led to compounds with significant antiviral and trypanocidal activity and exceptional selectivity. Several modifications were made to further investigate the structure-activity relationships (SARs) and confirm the critical role of lipophilicity and conformational degrees of freedom.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385743PMC
http://dx.doi.org/10.3390/ph16071046DOI Listing

Publication Analysis

Top Keywords

antiviral trypanocidal
12
trypanocidal activity
12
novel lipophilic
4
lipophilic hydroxamates
4
hydroxamates based
4
based spirocarbocyclic
4
spirocarbocyclic hydantoin
4
hydantoin scaffolds
4
scaffolds potent
4
antiviral
4

Similar Publications

Cryo-EM structure of Nipah virus L-P polymerase complex.

Nat Commun

December 2024

Beijing Life Science Academy, Beijing, China.

Nipah virus (NiV) is a non-segmented, negative-strand (NNS) RNA virus, belonging to Paramyxoviridae. The RNA polymerase complex, composed of large (L) protein and tetrameric phosphoprotein (P), is responsible for genome transcription and replication by catalyzing NTP polymerization, mRNA capping and cap methylation. Here, we determine the cryo-electron microscopy (cryo-EM) structure of fully bioactive NiV L-P polymerase complex at a resolution of 3.

View Article and Find Full Text PDF

Synergistic potential of lopinavir and azole combinational therapy against clinically important Aspergillus species.

PLoS One

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America.

Aspergillus fumigatus is a widely distributed pathogen responsible for severe infections, particularly in immunocompromised individuals. Triazoles are the primary treatments options for Aspergillus infections; however, the emergence of acquired resistance to this antifungal class is becoming a growing concern. In this study, we investigated the potential of the antiviral drug, lopinavir (LPV) to restore the susceptibility of A.

View Article and Find Full Text PDF

The COVID-19 pandemic highlighted the need for the rapid development of antiviral therapies. Viral RNA-dependent RNA polymerases (RdRp) are promising targets, and numerous virtual screenings for potential inhibitors were conducted without validation of the identified hits. Here we have tested a set of presumed RdRp inhibitors in biochemical assays based on fluorometric detection of RdRp activity or on the electrophoretic separation or RdRp products.

View Article and Find Full Text PDF

Dissolution, phase behavior and mass transport of amorphous solid dispersions in aspirated human intestinal fluids.

J Pharm Sci

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA. Electronic address:

Amorphous solid dispersions (ASDs) typically show improved dissolution and generate supersaturated solutions, enhancing the oral bioavailability of poorly soluble drugs. To gain insights into intraluminal ASD behavior, we utilized two poorly soluble drugs with different crystallization tendencies, atazanavir and posaconazole, prepared as ASDs at a 10% drug loading with hydroxypropyl methylcellulose acetyl succinate (HPMCAS). We evaluated their release in aspirated fasted-state human intestinal fluid (FaHIF), and multi-component fasted-state simulated intestinal fluid (composite-FaSSIF), characterizing the supersaturation profiles and drug-rich nanodroplets that formed.

View Article and Find Full Text PDF

Strong antileishmanial and antitrypanosomal activities were highlighted for the crude methanolic extract (IC = 0.61 and 2.15 μg/mL, respectively) of Zanthoxylum zanthoxyloides (Lam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!