Photocatalytic CO Conversion into Solar Fuels Using Carbon-Based Materials-A Review.

Molecules

Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan.

Published: July 2023

Carbon materials with elusive 0D, 1D, 2D, and 3D nanostructures and high surface area provide certain emerging applications in electrocatalytic and photocatalytic CO utilization. Since carbon possesses high electrical conductivity, it expels the photogenerated electrons from the catalytic surface and can tune the photocatalytic activity in the visible-light region. However, the photocatalytic efficiency of pristine carbon is comparatively low due to the high recombination of photogenerated carriers. Thus, supporting carbon materials, such as graphene, CNTs (Carbon nanotubes), g-CN, MWCNs (Multiwall carbon nanotubes), conducting polymers, and its other simpler forms like activated carbon, nanofibers, nanosheets, and nanoparticles, are usually combined with other metal and non-metal nanocomposites to increase the CO absorption and conversion. In addition, carbon-based materials with transition metals and organometallic complexes are also commonly used as photocatalysts for CO reduction. This review focuses on developing efficient carbon-based nanomaterials for the photoconversion of CO into solar fuels. It is concluded that MWCNs are one of the most used materials as supporting materials for CO reduction. Due to the multi-layered morphology, multiple reflections will occur within the layers, thus enhancing light harvesting. In particular, stacked nanostructured hollow sphere morphologies can also help the metal doping from corroding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385390PMC
http://dx.doi.org/10.3390/molecules28145383DOI Listing

Publication Analysis

Top Keywords

solar fuels
8
carbon materials
8
carbon nanotubes
8
carbon
7
materials
5
photocatalytic
4
photocatalytic conversion
4
conversion solar
4
fuels carbon-based
4
carbon-based materials-a
4

Similar Publications

Carbon dioxide, global boiling, and climate carnage, from generation to assimilation, photocatalytic conversion to renewable fuels, and mechanism.

Sci Total Environ

January 2025

Program in Environmental and Polymer Engineering, Graduate School of INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Environmental Engineering, INHA University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea. Electronic address:

The increasing CO concentration in the atmosphere has substantial impacts on the global temperature. For energy sustainability and minimization of the effects of global warming, an approach to understand CO capturing and a carbon neutral culture is extremely essential in the present circumstances. The CO emission from vehicles and industries can be minimized using energy cost-effective techniques and can be converted more selectively into reusable fuels via thermochemical, electrochemical, photochemical, photocatalytic, electrocatalytic, biological and inorganic carbonate-based approaches.

View Article and Find Full Text PDF

This study uses the Quantum ESPRESSO code to introduce Hubbard correction (U) to the density functional theory (DFT) in order to examine the effects of non-metals (C, F, N, and S) doping on the structural, electronic, and optical characteristics of rutile TiO. Rutile TiO is a substance that shows promise for use in renewable energy production, including fuels and solar energy, as well as environmental cleanup. Its wide bandgap, however, restricts their uses to areas with UV light.

View Article and Find Full Text PDF

Direct photochemical conversion of CO2 into a single carbon-based product currently represents one of the major issues in the catalysis of the CO2 reduction reaction (CO2RR). In this work, we demonstrate that the combination of an organic photosensitizer with a heptacoordinated iron(II) complex allows to attain a noble-metal-free photochemical system capable of efficient and selective conversion of CO2 into CO upon light irradiation in the presence of N,N-diisopropylethylamine (DIPEA) and 2,2,2-trifluoroethanol (TFE) as the electron and proton donor, respectively, with unprecedented performances (ΦCO up to 36%, TONCO > 1000, selectivity > 99%). As shown by transient absorption spectroscopy studies, this can be achieved thanks to the fast rates associated with the electron transfer from the photogenerated reduced dye to the catalyst, which protect the dye from parallel degradation pathways ensuring its stability along the photochemical reaction.

View Article and Find Full Text PDF

Formate is an important solar fuel, with large application potential in bioconversion. Especially, the win-win collaboration is achieved when formate is applied to the cultivation of microalgae, which combines the advantages from both artificial and natural photosynthesis. However, the inhibition of formate on the photosynthetic electron transport hinders the application of formate at high concentrations.

View Article and Find Full Text PDF

The toxicokinetics of nitrosamines remain a mystery to this day, though it appears that the role of nitrosamines in potentiating the generation of mutations required for the onset of skin cancer continues to be a significant concern. Nitrosamines are mutagens, genotoxic substances, and mediators of phototoxicity/carcinogenicity, whose long-term daily usage, in the context of polypharmacy, can result in the parallel appearance of heterogeneous forms of skin cancer: keratinocytic and melanocytic. But a number of clinical observations suggest that it is the nitrosamines that potentiate the multiple occurrences of skin cancer over the years, or recurrences of skin cancer localized in areas exposed to solar radiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!