Neuromorphic computing, reconfigurable optical metamaterials that are operational over a wide spectral range, holographic and nonvolatile displays of extremely high resolution, integrated smart photonics, and many other applications need next-generation phase-change materials (PCMs) with better energy efficiency and wider temperature and spectral ranges to increase reliability compared to current flagship PCMs, such as GeSbTe or doped SbTe. Gallium tellurides are favorable compounds to achieve the necessary requirements because of their higher melting and crystallization temperatures, combined with low switching power and fast switching rate. GaTe and non-stoichiometric alloys appear to be atypical PCMs; they are characterized by regular tetrahedral structures and the absence of metavalent bonding. The sp gallium hybridization in cubic and amorphous GaTe is also different from conventional p-bonding in flagship PCMs, raising questions about its phase-change mechanism. Furthermore, gallium tellurides exhibit a number of unexpected and highly unusual phenomena, such as nanotectonic compression and viscosity anomalies just above their melting points. Using high-energy X-ray diffraction, supported by first-principles simulations, we will elucidate the atomic structure of amorphous GaTe PLD films, compare it with the crystal structure of tetragonal gallium pentatelluride, and investigate the electrical, optical, and thermal properties of these two materials to assess their potential for memory applications, among others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386151 | PMC |
http://dx.doi.org/10.3390/nano13142137 | DOI Listing |
Small
January 2025
Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China.
The reasonable design of advanced anode materials for electrochemical energy storage (EES) devices is crucial in expediting the progress of renewable energy technologies. NbO has attracted increasing research attention as an anode candidate. Defect engineering is regarded as a feasible approach to modulate the local atomic configurations within NbO.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
The transformation of graphite into diamond (2-10 nm) at ordinary pressure by monodispersed Ta atoms was recently reported, while the effects of Ta concentration on the transition process remain obscure. Here, by regulating the Ta wire treatment time, as well as the annealing time and temperature, larger diamond grians (5-20 nm) are successfully synthesized, and the transition process of graphite to diamond is revealed to vary with Ta concentration. Specifically, short Ta wire treatments (5-10 min) induce graphite to form a "circle" structure and transforms into diamond directly after annealing.
View Article and Find Full Text PDFNPJ Comput Mater
January 2025
School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, Storrs, CT USA.
Machine learning has advanced the rapid prediction of inorganic materials properties, yet data scarcity for specific properties and capturing thermodynamic stability remains challenging. We propose a framework utilizing a Graph Neural Network with composition-based and crystal structure-based architectures, combined with a transfer learning scheme. This approach accurately predicts energy-related properties (e.
View Article and Find Full Text PDFACS Photonics
January 2025
Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), GR-70013 Heraklion, Crete, Greece.
THz metamaterials present unique opportunities for next-generation technologies and applications as they can fill the "THz gap" originating from the weak response of natural materials in this regime, providing a variety of novel or advanced electromagnetic wave control components and systems. Here, we propose a novel metamaterial design made of three-dimensional, metallic, "cactus-like" meta-atoms, showing electromagnetically induced transparency (EIT) and enhanced refractive index sensing performance at low THz frequencies. Following a detailed theoretical analysis, the structure is realized experimentally using multiphoton polymerization and electroless silver plating.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!