The addition of nanoparticles has been reported to be an effective strategy for enhancing seed germination, but the underlying mechanisms whereby this occurs are unclear. In the present study, we added silica nanoparticles (SiNPs) to an aqueous growth medium in which tomato seeds were germinated. We examined the effects of SiNPs on growth and possible mechanisms of action. SiNPs had a diameter of 10-17 nm and 110-120 nm. SiNPs shortened the mean germination time from 5.24 ± 0.29 days to 4.64 ± 0.29 days. Seedling vigor, measured by criteria including length and weight, was also improved compared to the control condition. The presence of SiNPs in the seedlings was assessed using an X-ray fluorescence spectrometer. The nanoparticles may have promoted germination by enhancing water imbibition by the seeds or altering the external microenvironment. Scanning electron microscopy revealed changes in the seed coat during germination, many of which were only observed in the presence of nanoparticles. Soil bacteria affect germination; specifically, sp. may promote germination. The number of sp. changed in the germination medium with SiNPs compared to the control. This suggested that these bacteria could interact with SiNPs to promote germination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385787 | PMC |
http://dx.doi.org/10.3390/nano13142110 | DOI Listing |
Tree Physiol
January 2025
Laboratoire de Biologie du Développement, UMR 7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, CNRS, F-75005 Paris, France.
Norway maple and sycamore belong to the Acer genus and produce desiccation-tolerant and desiccation-sensitive seeds, respectively. We investigated the seed germination process at the imbibed and germinated stages using metabolomic and proteomic approaches to determine why sycamore seeds germinate earlier and are more successful at establishing seedlings than Norway maple seeds under controlled conditions. Embryonic axes and embryonic axes with protruded radicles were analyzed at the imbibed and germinated stages, respectively.
View Article and Find Full Text PDFPrev Nutr Food Sci
December 2024
Department of Food and Nutrition, Sunchon National University, Suncheon 57922, Korea.
Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, poses an emerging threat as it can lead to colorectal cancer, thrombosis, and other chronic conditions. The present study demonstrated the protective effects of peanut sprout extracts (PSEs) prepared from day 2 to day 7 of germination against lipopolysaccharide (LPS)-induced epithelial barrier breakdown. Although the peanut sprout length increased in a time-dependent manner from day 1 to day 7, the extraction yields remained relatively consistent from day 2 to day 7.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Plant and Soil Sciences, 117 Dorman Hall, Box 9555, Mississippi State University, Mississippi State, MS, 39762, USA.
Temperature is a fundamental factor influencing the processes of seed germination. Investigating the response of carinata to thermal stress and establishing a dependable and efficient method for screening thermotolerance will enhance breeding programs and model applications. We assessed the response of 12 carinata genotypes to a range of eight temperatures, spanning from 8 to 37 °C, throughout the germination process.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States.
Introduction: Little is known about the similarities and differences in responses of plants grown from heteromorphic seeds, which are morpho-physiologically dissimilar seeds produced simultaneously on the same plant.
Methods: In this context, we studied how plants grown from heteromorphic (i.e.
iScience
December 2024
Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
Strigolactones serve as germination signals for several root-parasitic plant species within the Orobanchaceae family. Yet, their role in the life cycle of the facultatively parasitic genus has remained elusive. Here, we demonstrate that strigolactones initiate the formation of haustorium-like structures in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!