Organic small-molecule semiconductor materials have attracted extensive attention because of their excellent properties. Due to the randomness of crystal orientation and growth location, however, the preparation of continuous and highly ordered organic small-molecule semiconductor nanocrystal arrays still face more challenges. Compared to organic macromolecules, organic small molecules exhibit better crystallinity, and therefore, they exhibit better semiconductor performance. The formation of organic small-molecule crystals relies heavily on weak interactions such as hydrogen bonds, van der Waals forces, and π-π interactions, which are very sensitive to external stimuli such as mechanical forces, high temperatures, and organic solvents. Therefore, nanocrystal array engineering is more flexible than that of the inorganic materials. In addition, nanocrystal array engineering is a key step towards practical application. To resolve this problem, many conventional nanocrystal array preparation methods have been developed, such as spin coating, etc. In this review, the typical and recent progress of nanocrystal array engineering are summarized. It is the typical and recent innovations that the array of nanocrystal array engineering can be patterned on the substrate through top-down, bottom-up, self-assembly, and crystallization methods, and it can also be patterned by constructing a series of microscopic structures. Finally, various multifunctional and emerging applications based on organic small-molecule semiconductor nanocrystal arrays are introduced.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386679 | PMC |
http://dx.doi.org/10.3390/nano13142087 | DOI Listing |
Nanoscale
December 2024
Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Advances in nanotechnology are able to open up new prospects for catalysis, particularly through the development of catalytic systems featuring precisely controlled size and distribution of metal nanoparticles. In this study, we prepared a model catalytic system, where monodisperse Pt nanoparticles, approximately 8 nm in size, were uniformly distributed onto CeO and SiO/Si substrates block copolymer (BCP) nanopatterning. To address the validity of these catalysts, we conducted a case study on CO oxidation in a continuous flow reactor, investigated the reaction kinetics, and compared our observations with those reported in the literature.
View Article and Find Full Text PDFChem Sci
December 2024
Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
Self-assembly is a powerful strategy for creating complex architectures and elucidating the aggregation behaviors of biopolymers. Herein, we investigate the hierarchical assembly of chitin using a approach based on synthetic oligosaccharides. We discovered that chitin oligosaccharides self-assemble into platelets, which then form higher-order structures.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department of Chemical Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
Hybrid nanoplasmonic structures composed of subwavelength apertures in metallic films and nanoparticles have recently been demonstrated as ultrasensitive plasmonic sensors. This work investigates the electrokinetically driven propagation of the assembly mechanism of the metallic nanoparticles through nanoapertures. The Debye-Hückel approximation for a symmetric electrolyte solution with overlapping electrical double layers (EDLs) is used to obtain an analytical solution to the problem.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Xinjiang Endemic and Ethnic Diseases, NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, School of Medicine, Shihezi University, Shihezi 832003, China.
Kaposi's sarcoma-associated herpesvirus (KSHV) is a variety of the human gamma-herpesvirus that often leads to the occurrence of malignant tumors. In addition, the occurrence of Kaposi's sarcoma is a major cause of death among AIDS patients. Ganciclovir (GCV) is the most widely used drug against KSHV infection in the clinic.
View Article and Find Full Text PDFActa Neuropathol
December 2024
Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
Nerve injury causes neuropathic pain and multilevel nerve barrier disruption. Nerve barriers consist of perineurial, endothelial and myelin barriers. So far, it is unclear whether resealing nerve barriers fosters pain resolution and recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!