Graphene nanoflakes are widely utilized as high-performance molecular devices due to their chemical stability and light weight. In the present study, the interaction of aluminum species with graphene nanoflake (denoted as GR-Al) has been investigated using the density functional theory (DFT) method to elucidate the doping effects of Al metal on the electronic states of GR. The mechanisms of the diffusion of Al on GR surface and the hydrogen storage of GR-Al were also investigated in detail. The neutral, mono-, di-, and trivalent Al ions (expressed as Al, Al, Al, and Al, respectively) were examined as the Al species. The DFT calculations showed that the charge transfer interaction between Al and GR plays an important role in the binding of Al species to GR. The diffusion path of Al on GR surface was determined: the barrier heights of Al diffusion were calculated to be 2.1-2.8 kcal mol, which are lower than Li on GR (7.2 kcal/mol). The possibility of using GR-Al for hydrogen storage was also discussed on the basis of the theoretical results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384847 | PMC |
http://dx.doi.org/10.3390/nano13142046 | DOI Listing |
We report the cosolvency effect of formamidinium lead triiodide (FAPbI) in a mixture of γ-butyrolactone (GBL) and 2-methoxyethanol (2ME), a phenomenon where FAPbI shows higher solubility in the solvent blend than in either alone. We found that FAPbI exhibits 10× higher solubility in 30% 2ME in GBL than in 2ME alone and 40% higher solubility than in GBL alone at 90 °C. This enhanced solubility is attributed to the disruption of the hydrogen bonding network within 2ME, allowing its hydroxyl and ether groups to interact more freely with the solute.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2025
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
Hydrogen storage as hydrates is one of the most environmentally benign approaches to store hydrogen as it requires only water and traces of promoters. However, the scalability of storing hydrogen hydrate formation is hindered by the limited understanding of the structure, dynamics and energetics of hydrogen and promoters in the hydrate cages. In this study, molecular dynamics simulation configurations with different occupancy modes of H and tetrahydrofuran (THF) in the hydrate cages are investigated under the following scenarios: (i) two H molecules occupying the small cages, (ii) occupancy of H molecules in the THF-free large cages, and (iii) co-occupancy of H and THF in one large cage.
View Article and Find Full Text PDFSmall
March 2025
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
State Key Laboratory of Mechanics and Control for Aerospace Structures, Laboratory of Intelligent Nano Materials and Devices of Ministry of Education, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Borophene, a revolutionary two-dimensional (2D) material with exceptional electrical, physical, and chemical properties, holds great promise for high-performance, highly integrated information storage systems. However, its metallic nature and structural instability have significantly limited its practical applications. To address these challenges, hydrogenated borophene has emerged as an ideal alternative, offering enhanced stability and semiconducting properties.
View Article and Find Full Text PDFSci Technol Adv Mater
January 2025
Materials Research and Consultancy Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
To promote sustainable development and reduce fossil fuel consumption, there is a growing demand for high-performance, cost-effective, safe and environmentally friendly batteries for large-scale energy storage systems. Among the emerging technologies, zinc-air batteries (ZABs) have attracted significant interest. By integrating the principles of traditional zinc-ion batteries and fuel cells, ZABs offer remarkably high theoretical energy density at lower production cost compared to the current state-of-the-art lithium-ion batteries (LIBs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!