A series of long-afterglow luminescent materials (SrAlO: Eu (SAOE), SrAlO: Eu, Dy (SAOED) and SrAlO: Eu, Dy, Gd (SAOEDG)) was synthesized via the combustion method. Temperature and concentration control experiments were conducted on these materials to determine the optimal reaction temperature and ion doping concentration for each sample. The crystal structure and luminescent properties were analyzed via X-ray diffraction (XRD), photoluminescence (PL), and afterglow attenuation curves. The outcomes demonstrate that the kind of crystal structure and the location of the emission peak were unaffected by the addition of ions. The addition of Eu to the matrix's lattice caused a broad green emission with a central wavelength of 508 nm, which was attributed to the characteristic 4f5d to 4f electronic dipole, which allowed the transition of Eu ions. While acting as sensitizers, Dy and Gd could produce holes to create a trap energy level, which served as an electron trap center to catch some of the electrons produced by the excitation of Eu but did not itself emit light. After excitation ceased, this allowed them to gently transition to the ground state to produce long-afterglow luminescence. It was observed that with the addition of sensitizer ions, the luminous intensity of the sample increased, and the afterglow duration lengthened. The elemental structure and valence states of the doped ions were determined with an X-ray photoelectron spectrometer (XPS). Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) were used to characterize the samples. The results show that the sample was synthesized successfully, and the type and content of ions in the fluorescent powder could be determined. The fluorescence lifetime, quantum yield, bandgap value, afterglow decay time, and coordinate position in the coherent infrared energy (CIE) diagram of the three best sample groups were then analyzed and compared. Combining the prepared phosphor with ink provides a new idea and method for the field of anti-counterfeiting through screen printing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386471PMC
http://dx.doi.org/10.3390/nano13142034DOI Listing

Publication Analysis

Top Keywords

crystal structure
8
ions
5
enhanced fluorescence
4
fluorescence characteristics
4
sralo
4
characteristics sralo
4
sralo phosphor
4
phosphor co-doping
4
co-doping anti-counterfeiting
4
anti-counterfeiting application
4

Similar Publications

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

A new gene coding for an iron-containing enzyme was identified in the genome of Acinetobacter radioresistens. Bioinformatics analysis allowed the assignment of the protein to DyP peroxidases, due to the presence of conserved residues involved in heme binding and catalysis. Moreover, Ar-DyP is located in an operon coding also for other enzymes involved in iron uptake and regulation.

View Article and Find Full Text PDF

Crystal structure of the anti-CRISPR protein AcrIE7.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Bacterial adaptive immunity, driven by CRISPR-Cas systems, protects against foreign nucleic acids from mobile genetic elements (MGEs), like bacteriophages. The type I-E CRISPR-Cas system employs the Cascade (CRISPR-associated complex for antiviral defense) complex for target DNA cleavage, guided by crRNA. Anti-CRISPR (Acr) proteins, such as AcrIE7, counteract this defense by inhibiting Cascade activity.

View Article and Find Full Text PDF

High selectivity, capacity and stability for electrochemical lithium extraction on boron-doped HMnO by tailoring lattice constant and intercalation energy.

Water Res

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:

A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.

View Article and Find Full Text PDF

Metal-free molecular perovskites have shown great potential for X-ray detection due to their tunable chemical structures, low toxicity, and excellent photophysical properties. However, their limited X-ray absorption and environmental instability restrict their practical application. In this study, cesium-based molecular perovskites (MDABCO-CsX, X = Cl, Br, I) are developed by introducing Cs at the B-site to enhance X-ray absorption while retaining low toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!