Maternal metabolic disruptions, such as ketosis, can have adverse effects on fetal development and influence postnatal factors. Twelve Holstein calves were randomly enrolled in this study at birth and monitored until 8 weeks of age. The study was conducted from fall 2018 until spring 2019. After completing the data collection period, calves were classified according to their respective dams ketotic condition after parturition. This classification was based on dam blood β-hydroxybutyrate < 1.4 mmol/L nonketotic (NONKET; n = 6 calves) or ≥1.4 mmol/L subclinical-ketotic (SK; n = 6 calves). SK calves had greater birth body weight ( = 0.05) but exhibited a slower growth rate compared to NONKET calves from 1 to 8 weeks ( = 0.02). At birth, SK calves had lower ( < 0.01) levels of non-esterified fatty acids and bilirubin compared to NONKET calves. Analysis of feces alpha diversity indicates that by 3 weeks, NONKET calves had greater diversity, richness, and evenness. and were more abundant in SK calves ( < 0.05) at 3 weeks. In contrast, NONKET calves had a greater ( < 0.05) abundance of at 3 weeks. These findings suggest that subclinical ketosis in cows can impact the in-utero development, postnatal growth, and maturing gut microbiome of their offspring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383123PMC
http://dx.doi.org/10.3390/microorganisms11071839DOI Listing

Publication Analysis

Top Keywords

nonket calves
20
calves greater
12
calves
11
subclinical ketosis
8
postnatal growth
8
gut microbiome
8
compared nonket
8
weeks
5
nonket
5
physiological conditions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!