Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385734PMC
http://dx.doi.org/10.3390/mi14071452DOI Listing

Publication Analysis

Top Keywords

wearable biosensors
12
interstitial fluid
12
epidermal wearable
8
biosensors continuous
8
continuous monitoring
8
monitoring biomarkers
4
biomarkers chronic
4
chronic disease
4
disease interstitial
4
fluid healthcare
4

Similar Publications

Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations.

View Article and Find Full Text PDF

- xed Reality Interface for Monitoring: A HoloLens based prototype for healthcare practices.

Comput Struct Biotechnol J

December 2024

Centre for Mobile Innovation (CMI), Sheridan College, Oakville, Ontario, Canada.

In this paper, we introduce -a Mixed Reality (MR) system designed for healthcare professionals to monitor patients in wards or clinics. We detail the design, development, and evaluation of , which integrates real-time vital signs from a biosensor-equipped wearable, . The system generates holographic visualizations, allowing healthcare professionals to interact with medical charts and information panels holographically.

View Article and Find Full Text PDF

Bioelectronic face masks can easily collect biomarkers in saliva, in which free cortisol is abundant. However, conventional bioelectronic face masks involve significant challenges in terms of permeability and inhalation due to their nonpermeable film-type structure. Herein, we introduce a flexible and permeable nanomesh-based wearable biosensor designed for bioelectronic face masks that monitor cortisol levels.

View Article and Find Full Text PDF

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights the current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Spiro-Ometad As A Promising Substrate In Biomedical Devices.

ChemistryOpen

January 2025

Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy.

Bioactive films composed of Spiro-OMeTAD, a conductive molecular material (CMM), in combination with collagen have been manufactured and characterised for the first time. In-vitro cellular testing demonstrated the non-cytotoxicity of the doped Spiro-OMeTAD /Collagen films, opening the way for implantable or wearable medical devices and biosensors based on molecular materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!