Single-Particle Irradiation Effect and Anti-Irradiation Optimization of a JLTFET with Lightly Doped Source.

Micromachines (Basel)

Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, China.

Published: July 2023

In this article, the particle irradiation effect of a lightly doped Gaussian source heterostructure junctionless tunnel field-effect transistor (DMG-GDS-HJLTFET) is discussed. In the irradiation phenomenon, heavy ion produces a series of electron-hole pairs along the incident track, and then the generated transient current can overturn the logical state of the device when the number of electron-hole pairs is large enough. In the single-particle effect of DMG-GDS-HJLTFET, the carried energy is usually represented by linear energy transfer value (LET). In simulation, the effects of incident ion energy, incident angle, incident completion time, incident position and drain bias voltage on the single-particle effect of DMG-GDS-HJLTFET are investigated. On this basis, we optimize the auxiliary gate dielectric, tunneling gate length for reliability. Simulation results show HfO with a large dielectric constant should be selected as the auxiliary gate dielectric in the anti-irradiation design. Larger tunneling gate leads to larger peak transient drain current and smaller tunneling gate means larger pulse width; from the point of anti-irradiation, the tunneling gate length should be selected at about 10 nm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383079PMC
http://dx.doi.org/10.3390/mi14071413DOI Listing

Publication Analysis

Top Keywords

tunneling gate
16
lightly doped
8
electron-hole pairs
8
single-particle dmg-gds-hjltfet
8
auxiliary gate
8
gate dielectric
8
gate length
8
gate
6
incident
5
single-particle irradiation
4

Similar Publications

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Different temperatures leakage mechanisms of (AlO)(HfO) gate Dielectrics deposited by atomic layer deposition.

Sci Rep

January 2025

Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, Xidian University, Xi'an, 710071, China.

(AlO)(HfO) films with varying compositions were deposited on silicon substrates via plasma-enhanced atomic layer deposition (PEALD), and metal-oxide-semiconductor (MOS) capacitors were fabricated. The impact of varying induced Al content on the dielectric properties of HfO was examined through electrical measurements. The results showed that increasing Al content raised the flat-band voltage, reduced the interface state density (D), and significantly lowered the leakage current at a given voltage.

View Article and Find Full Text PDF

A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA.

Micromachines (Basel)

November 2024

State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

Tunnel magnetoresistance (TMR) sensors, known for their high sensitivity, efficiency, and compact size, are ideal for detecting weak currents, particularly leakage currents in smart grids. However, temperature variations can negatively impact their accuracy. This work investigates the effects of temperature variations on measurement accuracy.

View Article and Find Full Text PDF

Spin and valley polarizations (P and P) and tunneling magnetoresistance (TMR) are demonstrated in the ferromagnetic/barrier/normal/barrier/ferromagnetic WSe junction, with the gate voltage and off-resonant circularly polarized light (CPL) applied to the two barrier regions. The minimum incident energy of non-zero spin- and valley-resolved conductance has been derived, which is consistent with numerical calculations and depends on the electric potential U, CPL intensity ΔΩ, exchange field h, and magnetization configuration: parallel (P) or antiparallel (AP). For the P (AP) configuration, the energy region with P = -1 or P = 1 is wider (narrower) and increases with ΔΩ.

View Article and Find Full Text PDF

Squeeze pumping of lipids and insecticides by ABCH transporter.

Cell

December 2024

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:

ATP-binding cassette (ABC) transporter subfamily H is only identified in arthropods and zebrafish. It transports lipids and is related to insecticide resistance. However, the precise mechanisms of its functions remain elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!