A low-driving energy and bistable recoverable MEMS safety and arming device (S&A), based on microcasting technology and deep silicon etching technology, is proposed to meet safety system requirements. A force-electromagnetic combination solution is constructed for the Si MEMS S&A, with parameters and strength verified, ultimately achieving an S&A size of (13 × 13 × 0.4) mm. Additionally, a low-driving energy U-shaped electromagnetic coil (USEC) model is designed using microcasting technology, and an electrical-magnetic-mechanical coupling mathematical model is established to explore the relationship between design parameters and driving capacity and reliability. With a driving power of 8 V/0.5 A, the model achieves a stable electromagnetic driving force of 15 mN with a travel distance of 0.5 mm. Finally, the fabrication and testing of the USEC and S&A are carried out, with driving capability and S&A disarming ability tests conducted to verify the feasibility of the system design. Compared to the existing S&A, this scheme has the advantages of low-driving energy, recoverability, fast response speed, and strong adaptability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384045 | PMC |
http://dx.doi.org/10.3390/mi14071346 | DOI Listing |
Light Sci Appl
January 2025
Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, 475004, Kaifeng, China.
Solution-processed quantum dot light-emitting diodes (QLEDs) hold great potential as competitive candidates for display and lighting applications. However, the serious energy disorder between the quantum dots (QDs) and hole transport layer (HTL) makes it challenging to achieve high-performance devices at lower voltage ranges. Here, we introduce "giant" fully alloy CdZnSe/ZnSeS core/shell QDs (size ~ 19 nm) as the emitting layer to build high-efficient and stable QLEDs.
View Article and Find Full Text PDFAdv Mater
January 2025
Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
The sluggish anodic oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysis necessitates applied bias to facilitate electron transfer as well as bond cleavage and formation. Traditional electrocatalysis focuses on analyzing the effects of electron transfer, while the role of charge accumulation induced by the applied overpotential has not been thoroughly investigated. To explore the influence mechanism of bias-driven charge accumulation, capacitive Mn is incorporated into IrO to regulate the local electronic structure and the adsorption behavior.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Air-conditioning systems, composed mainly of humidity control and heat reallocation units, play a pivotal role in upholding superior air quality and human well-being across diverse environments ranging from international space stations and pharmacies to granaries and cultural relic preservation sites, and to commercial and residential buildings. The adoption of sorbent water as the working pair and low-grade renewable or waste heat in adsorption-driven air-conditioning presents a state-of-the-art solution, notably for its energy efficiency and eco-friendliness vis-à-vis conventional electricity-driven vapor compression cycles. Here, we introduce a rational π-extension strategy to engineer an ultrarobust and highly porous zirconium metal-organic framework (Zr-MOF).
View Article and Find Full Text PDFAdv Mater
January 2025
Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
Iridium (Ir)-based oxide is the state-of-the-art electrocatalyst for acidic water oxidation, yet it is restricted to a few Ir-O octahedral packing modes with limited structural flexibility. Herein, the geometric structure diversification of Ir is achieved by integrating spatially correlated Ir atoms into the surface lattice of TiO and its booting effect on oxygen evolution reaction (OER) is investigated. Notably, the resultant i-Ir/TiO catalyst exhibits much higher electrocatalytic activity, with an overpotential of 240 mV at 10 mA cm and excellent stability of 315 h at 100 mA cm in acidic electrolyte.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.
A series of polymer-dispersed liquid crystal (PDLC) films were prepared by using acrylate monomers containing heteroatom-terminated groups. The microscopic morphology and electro-optical properties reveal that these monomers effectively reduce the switching voltage and improve the contrast ratio at the same time. The saturation voltage of the best sample was reduced by 47%, and the contrast ratio was improved by 74%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!