This paper presents the design and realization of a simple and low-profile, four-port multiple-input-multiple-output (MIMO) antenna operating in a mm-wave band supporting 5G communication technologies. As part of the design methodology, the initial stage involved the development of a conventional monopole patch antenna optimized for operation at 26 GHz, which was matched to a 50 Ω stepped feed line. Afterward, a square-shaped defected ground structure (DGS) with semi-circle slots on the edges was placed on the ground to improve the isolation, and the circular and rectangular slots were incorporated as DGSs to optimize the antenna impedance bandwidth. Etching semi-circular-shaped slots on the ground plane achieved more than 34.2 dB isolation in the 26 GHz operating band. In addition, an arrangement of four symmetrical radiating elements was positioned orthogonally to minimize the antenna's physical size and improve the isolation. The proposed MIMO antenna's overall dimension was 25 × 25 mm2, which was printed on a Rogers 5880 substrate at a width of 0.787 mm and εr = 2.2. The proposed antenna covered the 5G mm-wave band with a 10 dB bandwidth ranging from 25.28-28.02 GHz, whereas the maximum gain attained for the proposed structure was 8.72 dBi. Additionally, the implementation of these slots effectively mitigated mutual coupling, resulting in reduced envelope correlation coefficient (ECC) values. Furthermore, other MIMO performance metrics, including channel capacity loss (CCL), mean effective gain (MEG), and diversity gain (DG), were analyzed for the proposed structure. The obtained results indicate its suitability for various usage areas, such as smart devices, mobile phones, and sensors in 5G applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10386084 | PMC |
http://dx.doi.org/10.3390/mi14071309 | DOI Listing |
Sci Rep
January 2025
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
This paper presents novel MIMO microstrip patch antennas with dimensions of 40 × 80 × 1.6 mm³ incorporating a decoupling and pattern correction structure (DPCS) designed to mitigate mutual coupling and radiation pattern distortion, operating within 3.6-3.
View Article and Find Full Text PDFSci Rep
January 2025
Electrical Engineering Department, King Saud University, 11421, Riyadh, Saudi Arabia.
A multipurpose antenna system that can handle a broad area of frequencies is crucial in the effort to build up widespread 5G Internet-of-Things (IoT) networks. For fifth-generation Internet-of-things applications, this research introduces a new multi-band antenna that can operate in the sub-6 GHz band (2-7 GHz), Ku-band (13-17.5 GHz), and millimeter wave band (25-39 GHz).
View Article and Find Full Text PDFSci Rep
January 2025
Space Science Centre, Climate Change Institute, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Malaysia.
This study presents the design and analysis of a compact 28 GHz MIMO antenna for 5G wireless networks, incorporating simulations, measurements, and machine learning (ML) techniques to optimize its performance. With dimensions of 3.19 λ₀ × 3.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronic Engineering, Hanyang University, Seoul, 04763, South Korea.
In this paper, a miniaturized 2 × 2 MIMO dual-wideband ground radiation antenna targeting Wi-Fi 6/6E/7 standards using 2.4 GHz, 5 GHz, and 6 GHz frequency bands with sufficient antenna performance was designed. The proposed antenna system contains four identical 4 mm × 6 mm antennas of the internal loop type and two identical 6 mm × 6 mm isolators containing lumped LC elements.
View Article and Find Full Text PDFSci Rep
December 2024
EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
This study discusses the results of using a regression machine learning technique to improve the performance of 6G applications that use multiple-input multiple-output (MIMO) antennas operating at the terahertz (THz) frequency band. This research evaluates an antenna's performance using various methodologies, such as simulation and RLC equivalent circuit models. The suggested design has a broad bandwidth of 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!