Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates.

Micromachines (Basel)

Chemical Engineering Department, CUCEI, Universidad de Guadalajara, Blvd.M. García Barragán # 1451, Guadalajara 44430, Jalisco, Mexico.

Published: June 2023

The formation of microparticles () of biocompatible and biodegradable hydrogels such as polyethylene glycol diacrylate (PEGDA) utilizing microfluidic devices is an attractive option for entrapment and encapsulation of active principles and microorganisms. Our research group has presented in previous studies a formulation to produce these hydrogels with adequate physical and mechanical characteristics for their use in the formation of . In this work, hydrogel are formed based on PEGDA using a microfluidic device with a T-junction design, and the become hydrogel through a system of photopolymerization. The diameters of the are evaluated as a function of the hydrodynamic condition flow rates of the continuous (Qc) and disperse (Qd) phases, measured by optical microscopy, and characterized through scanning electron microscopy. As a result, the following behavior is found: the diameter is inversely proportional to the increase in flow in the continuous phase (Qc), and it has a significant statistical effect that is greater than that in the flow of the disperse phase (Qd). While the diameter of the is proportional to Qd, it does not have a significant statistical effect on the intervals of flow studied. Additionally, the polydispersity index (PDI) was measured for each experimental hydrodynamic condition, and all values were smaller than 0.05, indicating high homogeneity in the . The microparticles have the potential to entrap pharmaceuticals and microorganisms, with possible pharmacological and bioremediation applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385006PMC
http://dx.doi.org/10.3390/mi14071279DOI Listing

Publication Analysis

Top Keywords

based pegda
8
microfluidic devices
8
flow rates
8
hydrodynamic condition
8
flow
5
generation photopolymerized
4
photopolymerized microparticles
4
microparticles based
4
pegda hydrogel
4
hydrogel t-junction
4

Similar Publications

Antifouling zwitterionic materials have extensive applications in the biomedical field. This study designed and successfully synthesized a novel poly(carboxybetaine) diacrylate (PCBDA) via cationic ring-opening polymerization of 2-methyl-2-oxazine, chain modification by the Michael reaction, and chain end transformation to acrylate. The cross-linker was obtained with a tunable molecular weight.

View Article and Find Full Text PDF

3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response.

Int J Biol Macromol

January 2025

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:

Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds.

View Article and Find Full Text PDF

Chitosan/Alginate-Based Hydrogel Loaded With VE-Cadherin/FGF as Scaffolds for Wound Repair in Different Degrees of Skin Burns.

J Biomed Mater Res B Appl Biomater

January 2025

Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China.

Burns are complex traumatic injuries that lead to severe physical and psychological problems due to the prolonged healing period and resulting physical scars. Owing to their versatility, hydrogels can be loaded with various functional factors, making them promising wound dressings. However, many hydrogel dressings cannot support cell survival for a long time, thereby delaying the process of tissue repair.

View Article and Find Full Text PDF

Humidity-Activated Ammonia Sensor Based on Carboxylic Functionalized Cross-Linked Hydrogel.

Sensors (Basel)

December 2024

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.

Owing to its extensive use and intrinsic toxicity, NH detection is very crucial. Moisture can cause significant interference in the performance of sensors, and detecting NH in high humidity is still a challenge. In this work, a humidity-activated NH sensor was prepared by urocanic acid (URA) modifying poly (ethylene glycol) diacrylate (PEGDA) via a thiol-ene click cross-linking reaction.

View Article and Find Full Text PDF
Article Synopsis
  • Histology is crucial for examining tissue structure and cell details, but standard methods for cryosectioning small tissues like organoids lack efficiency and cost-effectiveness, hindering analysis.
  • The adapted HistoBrick method uses an optimal embedding mixture of 8% PEGDA and 2.5% gelatine, providing support for fragile samples during cryosectioning and preserving delicate structures of human retinal organoids.
  • Using these PEGDA-gelatine HistoBricks, researchers monitored retinal organoid development over time, finding that photoreceptor cell bodies were sustained for up to 98 weeks, although outer segments diminished, making this approach valuable for increased throughput in tissue studies and research.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!