The process of aging and escalating the failure of all body organs has become the center of interest in contemporary science and medicine. The leading role of phosphate-calcium tandem deficiency as a pacemaker of metabolic senescence has emerged recently. Most of the phosphates in the human body are stored in the bones, which seem to play a pivotal role in all metabolic and energetic processes. Bone metabolism combines physical activity with adaptive changes in the internal environment of the body, which is necessary for its survival. Phosphate-calcium signaling is the primary mechanism for controlling homeostasis and its recovery after exercise-induced disorders. Phosphates play an important role in the regulation of energy metabolism both by regulating postprandial glucose storage in the muscles and in the liver, as well as the distribution and adaptation of energy metabolites to the needs of the brain and skeletal muscles. The bone-driven energy metabolism is of decisive importance for maintaining all vital functions of the body organs, including their proper functioning and integrated interplay. The phosphate-calcium tandem contributes to the development and proper functioning of the organism, whereas energy dysmetabolism is the main cause of aging and the final termination of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10385453 | PMC |
http://dx.doi.org/10.3390/metabo13070860 | DOI Listing |
J Complement Integr Med
January 2025
Department of Basic Medical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
Background: Excessive fluoride exposure leads to increased oxidative stress and lipid peroxidation, causing harmful effects on the metabolic organs in the human body. Betanin, a pigment obtained from beetroot, is seen to have powerful anti-inflammatory and antioxidant. The study was conducted to determine the role of betanin in fluoride induced hepato-renal toxicity in Wistar rats.
View Article and Find Full Text PDFAm Surg
January 2025
Department of Pediatric Surgery, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
Background: Solid pseudopapillary neoplasms (SPNs) arising in the body or tail of the pancreas can be amenable to laparoscopic distal pancreatectomy with or without concomitant splenectomy. The purpose of this study was to evaluate laparoscopic distal pancreatectomy for SPN using the Warshaw technique as a means to preserve spleens in children.
Methods: We reviewed our database of SPN patients 19 years and younger (January 2006-December 2023).
Calcif Tissue Int
January 2025
Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan.
Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
RIKEN Center for Biosystems Dynamics Research, Suita-shi, Osaka, Japan.
Background: In aging societies, neurodegenerative diseases, such as Alzheimer's disease, are receiving attention. These diseases are primary targets for preemptive medicine, emphasizing the importance of early detection and preventive treatment before the onset of severe, treatment-resistant damages. However, there is a lack of comprehensive investigation of lesions and molecular targets in the entire organ, whereas spatial identification of early-stage lesions is potentially overlooked at the single-cell level.
View Article and Find Full Text PDFFront Microbiol
December 2024
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
() is the main pathogenic bacterium causing dental caries, and the modes in which its traits, such as acid production, acid tolerance, and adhesion that contribute to the dental caries process, has been clarified. However, a growing number of animal experiments and clinical revelations signify that these traits of are not restricted to the detriment of dental tissues. These traits can assist in evading the immune system within body fluids; they empower to adhere not merely to the surface of teeth but also to other tissues such as vascular endothelium; they can additionally trigger inflammatory reactions and inflict damage on various organs, thereby leading to the occurrence of systemic diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!