Due to the detrimental impact of steel industry emissions on the environment, countries worldwide prioritize green development. Replacing sintered iron ore with pellets holds promise for emission reduction and environmental protection. As high-grade iron ore resources decline, research on limonite pellet technology becomes crucial. However, pellets undergo rigorous mechanical actions during production and use. This study prepared a series of limonite pellet samples with varying ratios and measured their compressive strength. The influence of humic acid on the compressive strength of green and indurated pellets was explored. The results indicate that humic acid enhances the strength of green pellets but reduces that of indurated limonite pellets, which exhibit lower compressive strength compared to bentonite-based pellets. Furthermore, artificial neural networks (ANN) predicted the compressive strength of humic acid and bentonite-based pellets, establishing the relationship between input variables (binder content, pellet diameter, and weight) and output response (compressive strength). Integrating pellet technology and machine learning drives limonite pellet advancement, contributing to emission reduction and environmental preservation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10384553PMC
http://dx.doi.org/10.3390/ma16145184DOI Listing

Publication Analysis

Top Keywords

compressive strength
24
limonite pellet
12
humic acid
12
pellets
8
limonite pellets
8
pellets artificial
8
artificial neural
8
iron ore
8
emission reduction
8
reduction environmental
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!