Superconducting State Properties of CuBaCaCuO.

Materials (Basel)

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Published: July 2023

The superconducting state properties of the CuBaCaCuO (Cu-1234) system, with a transition temperature as high as 117.5 K, were investigated. The ac magnetic susceptibility measurements confirmed a very sharp transition to the superconducting state. The upper critical field, , as high as 91 T, and the irreversibility field, , as high as 21 T at 77 K, were determined using dc SQUID magnetization measurements. The intragrain critical current density, , estimated from a magnetic hysteresis loop, is as high as 5 × 10 A/m in a self-generated magnetic field at 77 K. However, the intergrain critical current density in the studied material is smaller by four orders of magnitude due to very weak intergrain connections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10383888PMC
http://dx.doi.org/10.3390/ma16145111DOI Listing

Publication Analysis

Top Keywords

superconducting state
12
state properties
8
properties cubacacuo
8
field high
8
critical current
8
current density
8
cubacacuo superconducting
4
cubacacuo cu-1234
4
cu-1234 system
4
system transition
4

Similar Publications

Article Synopsis
  • Discovering the optoelectronic properties of transition metal dichalcogenides (TMDCs) is crucial for next-gen electronic devices, with a focus on the impact of external strains on Dirac states, an area still being explored.
  • A comprehensive database of 90 TMDC types was created, revealing that 27.3% exhibit Dirac materials with three distinct types of Dirac cones, influenced by external strain-induced electron localization.
  • The study shows that TMDCs from tellurides with 1H phase enhance the formation of Dirac cones under stress, leading to metallic properties and increased charge transport, ultimately offering insights for the development of TMDCs in superconducting and optoelectronic applications.
View Article and Find Full Text PDF

Collective modes in terahertz field response of disordered superconductors.

J Phys Condens Matter

January 2025

Department of Physics, Kent State University, 008 Smith Hall, Kent, Ohio, 44240, UNITED STATES.

We consider a problem of nonlinear response to an external electromagnetic radiation in conventional disordered superconductors which contain a small amount of weak magnetic impurities. We focus on the diffusive limit and use Usadel equation to analyze the excitation energy and dispersion relation of the collective modes. We determine the resonant frequency and dispersion of both amplitude (Schmidt-Higgs) and phase (Carlson-Goldman) modes for moderate strength of magnetic scattering.

View Article and Find Full Text PDF

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the thermoelectric properties of Abrikosov vortices in type-II superconductors under quantum conditions, focusing on two setups: a superconductor-insulator-normal-metal junction and a scanning tunneling microscope tip over the superconductor.
  • The strong breaking of particle-hole symmetry in these vortices leads to a significant thermoelectric response, predicting thermovoltage values of a few mV/K at temperatures near absolute zero.
  • The study finds favorable thermoelectric coefficients, with a figure of merit (ZT) around 1 for the S-I-N junction and over 3 when using the STM junction, suggesting potential applications as low-temperature thermocouples or in detecting single low-energy photons.
View Article and Find Full Text PDF

Recently, robust d-wave superconductive (SC) order has been unveiled in the ground state of the 2D t-t^{'}-J model-with both nearest-neighbor (t) and next-nearest-neighbor (t^{'}) hoppings-by density matrix renormalization group studies. However, there is currently a debate on whether the d-wave SC holds up strong on both t^{'}/t>0 and t^{'}/t<0 cases for the t-t^{'}-J model, which correspond to the electron- and hole-doped sides of the cuprate phase diagram, respectively. Here, we exploit state-of-the-art thermal tensor network approach to accurately obtain the phase diagram of the t-t^{'}-J model on cylinders with widths up to W=6 and down to low temperature as T/J≃0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!